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ABSTRACT

We will prove the existence of final smooth fuzzy topological spaces and final smooth fuzzy closure spaces.
From this fact, we can define quotient spaces of their spaces.

1. Introduction

A.P. Sostak [14.15] introduced the smooth fuzzy
topology as an extension of Chang's fuzzy topology [1].
It has been developed in many directions [2-9,12,13]
Moreover, K.C. Chattopadhyay and S.K. Samanta [3]}
introduced smooth fuzzy closure spaces. In [8,12], it is
proved the existence of initial smooth fuzzy topological
spaces as a generalization of subspaces and product
spaces of smooth fuzzy topological spaces.

In this paper, we will prove the existence of final
smooth fuzzy topological spaces and final smooth
fuzzy closure spaces. From this fact, we can define
quotient spaces of their spaces. Furthermore, we
investigate the relationship between final smooth fuzzy
topological spaces and final smooth fuzzy closure
spaces.

2. Preliminaries

In this paper, let X be a nonempty set, I=]0, 1] and
I,= (0, 1]. Let /X be the set of all fuzzy sets on X. 0
and T denote the constant fuzzy sets in X, taking
values O and 1 respectively. A fuzzy point x, for t<1,
is an element of /X such that

x,(y) = {

Let £ : X—Y be a function, u=F and vEI. We
define the direct image, f (1) and inverse image, f'(v)
of y and v under f

sup{u(x)|xe 1}, if 1) =0,
0, if f-l(y)= 0,

and f'(W(x)=v(f(x)), respectively.

t, if y= x,

0, otherwise.

() = {

Lemma 2.1 [6] If f: X—Y then we have the
following properties for direct and inverse image of
fuzzy sets under the mapping f : for v, v&/I" and y,
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,UiE]X,
(1) v =ZAf(v)) with equality if f is surjective,
(2) u <fNf(w) with equality if f is injective,
3) fUT = w=T - f1w),
@) fa —w=1 —fQ if £ is bijective,
G) f{(Vierv) = Vierf (v,
©6) £ Nierv) = /\iEI‘f-](vi)s
(D) f(Vient) =V ier flu),
®) f(Niert) < Nierfu) with equality if f is

injective.

Definition 2.2 [14] A function 7 : I¥—1 is called
a fuzzy smooth topology on X if it satisfies the
following conditions:

Ol 1(0) = t(1) =1

(02) T(u N ) Z T(U) AT (), for any wy, (s 1K

(03) ©(Vieq) = N ey, for any {1 | i<
</

The pair (X, 7) is called a smooth fuzzy topological
space.

Let 7, and 7, be smooth fuzzy topologies on X. We
say that 7, is finer than 1, (7, is coarser than 1,) iff
A=< T(A), for all AS X

Let (X, 7) be a smooth fuzzy topological space, then
for each r&/1, 7.={uEFK | t(u)=r} is a Chang's
fuzzy topology on X.

Definition 2.3 [3] A function C : X X[,—F is
called a smooth fuzzy closure operator on X if it
satisfies the following conditions: for each 4, uE ¥, r,
s&l, 5

(Cl) ¢(0, »n =0.

(C2) A< C(A, n.

(C3) CAV U, r) = CA, NV CWY, 7).

(C4) If r<s, then C(A, N<C(A, s).

The pair (X, C)
space.

A smooth fuzzy closure space (X, C) is called
topological provided that

is called a smooth fuzzy closure
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(CS) C(CA, 1), Nn=C(A n, for all A=K, rel,.

Let C, and C, be smooth fuzzy closure operators on
X. We say that C, is finer than C)(C, is coarser than
C) iff C(A, N<Cy(A, r), for all AEFK, rEI,

Theorem 2.4 [3] Let (X, 7) be a smooth fuzzy
topological space. For each r&1,, AEF, we define an
operator C; : I*X[;—=I* as follows:

Cdd, =N {ulu=i a1 - w=r).

Then it satisfies the following properties: for each A,
HEK, 1, sE1L,

(1) C.(0, ry=0.

2) A<C (A, p).

(B) C.(AVU, 1) = CAA NV CLu, n.

(4) It r<s, then CLA N<C{A, 5).

(5) C(ChA, 1), 1) = C(4 1),

6) If r=V {s€1, | C{A, 5)= A4}, then C.(4, r)= A.

Theorem 2.5 [3] Let (X, C) be a smooth fuzzy
closure space. Define the function 7. I*—1 on X by
WA=V {re,lcd -2, n=l - A}

Then:

(1) 7. is a smooth fuzzy topology on X.

(2) We have C = C iff (X, C) satisfies the following
conditions:

(a) It is a topological smooth fuzzy closure space.

O Ifr=V{s€IL, | CA, s) = A}, then C(A, N =4

Theorem 2.6 [9] Let (X, 7) be a smooth fuzzy
topological space. Let (X, C,) be a smooth fuzzy
closure space induced by (X, 7). Then 7, is a smooth
fuzzy topology on X such that 7o, = T.

Definition 2.7 Let (X, 1) and (¥, %) be smooth
fuzzy topological spaces. Let f: (X, 7)—=>(¥, ) be a
function. Then:

(1) fis called smooth continuous if T(A)<1(f ()
for all A&

(2) fis called smooth open if 7,(u)< n(f()) for all
UE K _

(3) fis called smooth closed if T(1 — W=<w(1 -
fa) for all usiX

Definition 2.8 [3] Let (X, C) and (Y, C,) be
smooth fuzzy closure spaces. A function f : (X, C))
—(Y, C,) is called a C-map if for all AEF, rE1,
ACUA M=CfN), ).

Theorem 2.9 [9] Let (X, 1) and (¥, ) be smooth
fuzzy topological spaces. Then f: (X, 7)—(¥, &) is a
smooth continuous map iff f: (X, C,)—(¥, Cp)isa C-
map.
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3. Final smooth fuzzy topological spaces

Theorem 3.1 Let Ybe asetand {(X, 7)}cabe a
family of smooth topological spaces. Let f;: X—Y be
a function for each i< A. Define the function 7: I'—
I by

o(A) = N I'EATi(fi—l(A'))-

Then:

(1) tis the finest smooth fuzzy topology on Y for
which each f; is a smooth continuous map.

Q) f: (Y, D—(Z, 1) is a smooth continuous map iff
eachf f : (X, ;)—(Z, 1,) is a smooth continuous map.

Proof. (1) First, we will show that 7is the smooth
fuzzy topology on Y.

(O1) It is easily proved from the definition of 7.

(O2) Suppose there exist g, V&I such that

TUA VKT A UAV).

From the definition of 7, there exists i< A such that
TUA VST WUA V) < TU) A V).

On the other hand, we have

T WA ) = Tl WA V)
=T (A T(W)
Z WA UV).

(by (O2))

It is a contradiction. Hence (/A v) = wu) A 7(v) for
all g, verr

(03) Suppose there exists a family {g, € I' | j€TI}
such that

oV jer ) < Njer ).

From the definition of 7, there exists i< A such that
o v;er W= (I vjer w)< /\jer wW,).

On the other hand, we have
Ti(ﬁ'l(\//er W)= Ti(\/jerﬁl(#j))
= N jert(fi () (by (03))
= Njert ().

It is a contradiction. Hence o V jer )= /\ je /o),
for any {y; | jET} S

Second, since WA)<7(f'(A)) for each i€ A, each f;
is a smooth continuous map.

Finally, we will show that 7 is the finest smooth
fuzzy topology on Y for which each f; is a smooth
continuous map.

If f; : (X, 7)—(¥, ) is smooth continuous, we have
(A < (7 '(A), for each i€A, A€IL From the
definition of 7, it follows *(A)<®A) for all AS"

(2) Necessity of the composition condition is clear
since the composition of smooth continuous maps is a
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smooth continuous map.
Conversely, since each f f: (X, )—(Z, 7)) is a
smooth continuous map, we have for each uEF,
A= fy'w)
SR

From the definition of 7, it follows T{u) < 7(f (1))
for all uEF. Hence f: (Y. —(Z, 1) is a smooth
continuous map. i

From Theorem 3.1, we can define the following
definition.

Definition 3.2 In Theorem 3.1, the structure 7 is
called the final smooth fuzzy ropology on Y associated
the families {(X,-, T,‘)},‘eA and (ﬁ)xC r~

From Theorem 3.1, we can easily prove the
following corollaries.

Corollary 3.3 lLet {(X, T)}ies be a family of
smooth fuzzy topological spaces, for different i, j& A,
X, and X, be disjoint, X=U =, X,. Let E; : X—X be an
identity function for each i<1TI. Define the function
T: "I by

wM)=/\ e TE (),

Then:

(1) tis the finest smooth fuzzy topology on X for
which each E;is smooth continuous.

(2) f: (X, D—(Z, 1) is a smooth continuous map iff
eachf . E;: (X, 1)—(Z, 1) is a smooth continuous map.

In above corollary, the pair (X, 7) is called the sum
smooth fuzzy topological space of ((X, T)}iea.

Corollary 34 Let Y be a set and (X, 7) be a
smooth topological space. Let f: X—Y be a surjective
function. Define the function 7 : /'—1 by

T(W= (D).

Then:

(1) 7:is the finest smooth fuzzy topology on X which
fis a smooth continuous map.

(2) g : (Y, ©)—(Z, 1) is smooth continuous iff g ©
f (X, 9—=(Z, 1) is smooth continuous.

From Corollary 3.4, we can define the following
definition.

Definition 3.5 Let (X, 7) be a smooth fuzzy
topological space and Y a set. Let f : X—Y be a
surjective function. The final smooth fuzzy topology 7
on Y associated the (X, 1) and f is called the quotient
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smooth fuzzy topology and the function f is called a
Sfuzzy quotient map.

Theorem 3.6 Let (X, 7)) and (¥, 7,) be smooth
fuzzy topological spaces. Let f :(X, 7, )=>(¥, ) is a
surjective smooth continuous map.

(1) If fis a smooth open map, then f is a fuzzy
quotient map.

(2) If fis a smooth closed map, then f is a fuzzy
quotient map.

Proof. (1) We only show that ,= 7. From Corollary
3.4 (1), we have 7(A) < 1(A) for all A& Y. Conversely,
we have it from the followings:

T = 5(f ' (A)

= o(fAf (D)
=1(A).

(because f is smooth open)
(because f is surjective)

(2) It is similar to (1).

Theorem 3.7 Let Y be a set and {(X;, C)},=4 be a
family of smooth closure spaces. Let f; : X—Y be a
surjective function for each i< A. Define the function
C : I"XIy—I" by

CA 1) = Vs ACHIA), 1),

Then:

(1) C is the finest smooth fuzzy closure operator on
Y for which each f; is a fuzzy C-map.

@) f: (Y, OYy>(Z, Cp) is a C-map iff each f “f : (X,
C)—(Z, Cy is a C-map.

Proof. (1) First, we will show that C is the smooth
fuzzy closure operator on Y.
(C1), (C3) and (C4) are easily proved from the
definition of C.
(C2) We proved it as follows:
C 1) =V e s ACH A 1)
=CH A, )
2/1(7‘,-"(1))

(by (C2))
(because f; is surjective)

Second, we have

CHA. 1) =V 4 HCEFA), »)
2 fCAF (A, 1)
ZH(CLA, ). (by Lemma 2.1(2))

Hence f(X;, C)—(¥, C) is a C-map.

Finally, we will show that C is the finest smooth
fuzzy closure operator on Y for which each f#, is a C-
map.

Iff - (X;, C)—(Y, C*) is a C-map for each i E A, then
we have, for each A€/ and r<1,

HC A )= CHf(A), 7). (A)
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It follows that
CA, n =\/iEA HCHE ), )
< Ve aCHEE ), 1) (by (A)
= C*(A, r). (by Lemma 2.1(1))

(2) Necessity of the composition condition is clear
since the composition of C-maps is a C-map.
Conversely, since each f = f(X,, C)—(Z, C,) is a C-
map, then we have
(F = NCL A M =CASF < fid), 1. ®)
It follows that
RCA, m) =V e (CHHA), 1))
=\/ieAf(ﬁ(Ci(ﬁl(/’L)» 19))]
(by Lemma 2.1(7))
< VieaCARKS ), 1) (by (B))
= CAfA), r). (by Lemma 2.1(1))

From Theorem 3.7, we can define the following
definition.

Definition 3.8 The structure C is called the final
smooth fuzzy closure operator on Y associated the
families {(Xi, C[)}iE/] and (ﬁ)iEF-

Corollary 3.9 Let {(X, C)},=, be a family of
smooth fuzzy closure spaces, for different i, jE A, X;
and X; be disjoint, X=U ,c, X, Let E, : X—X be an
identity function for each i€ T Define the function
C : FXI—~F by

CA, 1) =V icAE(CLE (), 1)).

Then:

(1) C is the finest smooth fuzzy closure operator on
X for which each E; is a fuzzy C-map.

(2)f: (¥, O—=(Z, Cz) is a C-map iff each fE, : (X,
C)—(Z, Cz) is a C-map.

In above corollary, the pair (X, C) is called the sum
smooth fuzzy closure space of {(X, C)}ica.

Definition 3.10 Let (X, C) be a smooth fuzzy
closure space and Y a set. Let f: X—V be a surjective
function. Define the function C;: I"XI;—I by

CiA 1) = ACE (A, ).

The (Y, Cp induced by f is called the fuzzy quotient
space of (X, C) and the function f is called a fuzzy
quotient map.

Theorem 3.11 Let Y be aset and {(X;, T:)};c, be
a family of smooth topological spaces. Let f: X—~Y
be a surjective function for each i€ A and {(X,, T)},c. a
family of smooth closure spaces induced by {(X,, T)};c4.
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Define the function T on Y as Theorem 3.1. Define the
function C : 'X[;—I" by
C(A, N=V e fCLF' ), ).

Then:

(1) C is finer than C, induced by 7.

2) 1=t

Proof. (1) Since f : (X, 7)—(¥, 0 is a smooth

continuous for each i< T, by Theorem 2.9, £, : (X, C,)
—(¥, C) is a C-map for each i€I From Theorem
3.7(1), C is finer than C,

(2) First, we will show that for each i€ A, f: (X,
T)—>(Y, 7¢) is fuzzy continuous. Suppose there exists A
€I such that

TD>T(f ' ().

Then there exists #, &1 with C(T - A, r)=T1- 1
such that
T D) Z r> T (A)).

On the other hand, we have
T-A=C(T-4 ry
=\/i€/\ ﬁ(cr,'(ﬁl(T )
Zﬁ(cn(l —ﬁ-](}“)a r()))'

It implies
T-f=T1-2
2fCAT £, r))
=2C(T =£'(A), rp). (by Lemma 2.1 (2))

From (C2) of Theorem 2.4, we have C.(T —£(A),
ro)=T1 —f(A). Since Te,=T, from Theorem 2.6, we
have

S AN =r.

It is a contradiction.
Hence f; : (X;, t)—(Y, 1) is smooth continuous.

Next, since 7 is the final smooth fuzzy topology on ¥,
by Theorem 3.1(1), we have 7(1)< ®(A) for all AE L.

Conversely, since 7.=7 from Theorem 2.6, we only
show that 7.(A)<1(A) for all AST,

Suppose there exists ASIY such that

TedA)>TLA).

Then there exists r,E1, with C{1 — A, ro)= 1-2
such that
Te D) Z r>TAA).

On the otheg hand, we have
[-2=C(I-A ry)

2C(1 = A ry). (by (1)

Hence C(1 - A, r)=1 — 4 from Definition 2.3(C2).
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O

So, T{A)=r,. It is a contradiction.

Example 1. Let X={qa, b}, Y={x} be sets. Define
T F—I as follows:
1, if A=0 or 1,
1

3 if /I:T—ao‘s or T~b0_7,

7(A) =
%, if A=T-(ays v bys),

0, otherwise.

From Theorem 2.4, we can obtain C, : K XI,—K as
follows:

0, if x=0, re Iy,

ags. if0#£A<a,,, 0<r<

3

’

Bol— b=

by, ifO0#A<h,,, 0<r<
C.(Ar) =107 0.7

aysvbyq. if A<agsv by,

Af ags, AL by, 0<r<

b —

1, otherwise.

From Corollary 3.4, we have a quotient space z,on
Y of (X, 1D as follows:
G=t )= {" v =0ort,
0, otherwise.

From Theorem 2.4, we have

0, ifv=0orre 1y,

1, otherwise.

Since Ci(v, nN=f(CLf1(v), r)) from Theorem 3.11,
we have

CTf(V, ry = {

0, ifv=0,re 1y,
CAv, 1) = $x47, if0=v<xgs, O<rS%—,
{, otherwise.

Hence Cyis finer than C, and C, # C,. Moreover, C;
is topological from Theorem 2.4. Since

111

1 1)1
o= o e ) - .

a fuzzy closure operator C; is not topological. From
Theorem 2.5, we have

1, ifv=0or1,

0, otherwise.

To(V) =
o= |
Hence 7=
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