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ABSTRACT

We introduce the concepts of TL-finite state machines, TL-transformation semigroups and coverings, and
several decompositions of transformation semigroups and investigate some of their algebraic structures.

1. Introduction

Since Wee[8] in 1967 introduced the concept of
fuzzy automata following Zadeh [9], fuzzy automata
theory has been developed by many researchers.
Recently Malik er al. [4-6] introduced the concepts of
fuzzy state machines and fuzzy transformation
semigroups based on Wee's concept of fuzzy automata
and related concepts and applied algebraic technique.
In [2,3] Cho er al. introduced the notion of T-fuzzy
state machine and T-fuzzy transformation semigroup
that are extensions of fuzzy state machine and fuzzy
transformation semigroup, respectively. In this paper,
we introduce the concepts of TL-finite state machines
and TL-transformation semigroups, coverings, restricted
direct products and full direct products of TL-finite
state machines and TL-transformation semigroups that
are generalizations of crisp concepts in algebraic
automata theory and investigate their algebraic
structures.

For the terminology in (crisp) algebraic automata
theory, we refer to [1].

2. TL-finite state machines and 7TL-
transformation semigroups

We let L denote a complete lattice that contains at
least two distinct elements. The meet, join, and partial
ordering will be written as A, V, and <, respectively.
We also write 1 and O for the greatest element and
least element of L, respectively.

Definition 2.1 A triple M =(Q, X, 7) where Q and
X are finite nonempty sets and 7is an L-subset of Q X
X XQ, ie., tis a function from QXXXQ to L, is
called an L-finite state machine.

Let M=(Q, X, 1) be an L-finite state machine.
Then Q is called the set of states and X is called the set
of input symbols. Let X* denote the set of all words of

elements of X of finite length with the empty word A.

Definition 2.2 [7] A binary operation 7 on L is
called a norm if

() Ta, DH=a,

(2) Ta, bY<T(a, ¢) whenever b=<c,

(3) T(a, b)=T(b, a),

@) T(a, T(h, ¢)) = T(Ia, b), ¢)
for all a, b, cEL.

From this definition one gets immediately 7(0,
a)=0 and T(a, by<aAb forall aq, bEL. A tnorm T
on L is said to be V -distributive if T(a, bV ¢) =T{(a, b)
VT(a, ¢) for all a, b, cEL. And T is said to be
positive-definite if T(a, #)>0 for all a, b L\{0}.

Throughout this paper, T shall mean a positive-
definite and V -distributive s-norm on L unless
otherwise specified.

We will denote T(a,, T(az, -, T(a,.2, T(a,., a,)) "))
by T(a,,:, a,) where a,, ", a,EL.

Example 2.3 Let L=[0, 1] X[0, 1]. Define a partial
order < on L by for a =(a,, ay), b= (b, b)EL, a<
b if a,<b, and a,<b,. Define T(a, b)=(a\b,, arb,)
where a=(a;,, @), b=(b;, b))EL. Then T is a
positive-definite and V -distributive t-norm on L.

Definition 2.4 Let M=(Q, X, 7) be an L-finite state
machine. Define 7°: QXX*X(Q —L by

1 ifg=p
(g, A p) =
(g. A p) {0 itgep
TP, a, s G )
=V AT(Up, ai, 1), Wry, @, 1), " Az, Qnty Frt)s
T(rn-lv Ay, CI)) l rieQ}

where p, ¢g&Q and @, ***, a,=X. When T is applied
to Al as above, _\l is called a TL-finite state
machine(briefly, a TL-fsm).
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Remark In Definition 2.4 if we let T=A and L =
[0, 1], then the concept of a TL-fms is the concept of

[5].
Proposition 2.5 Let (Q, X, 7) be a TL-fsm. Then

™. 0, @)= V{T(T, x, N, T, 3 ) | rEQ)
for all p, g=Q and x, yEX*.

Proof Letp,g&=Q.letx=a,"a,andy=b, - b,
with a;, *-".a, b, b,=X. Then

VAT(T(p, x, n, T, 3 q) | rEQ}

V{T(f(Pv a " Ay r)’f*(n bl bm’ q))lrEQ}

V{T(V{T(T(P, a, ‘11),"', T (qrhl’ Ay, r)) l 91",
qn-]eQ}’

V{T(T(r’ bl’ qn)!.”’z(qn+m-l’ brm q))lqm Gnsm-1

el reQ} by Definition 2.4

\/{T(T(ps al, (11),"', T(qrhl’ am r)’ I(r, bla qn)7“.’ T(r’

bl’ qn)’.”, 1(qn+m-lv bma Q))l%, Gnim-1» rEQ}

(P, a aby b, @) by Definition 2.4

T*(p’ XY, CI)

For a TL-fsm, let be a relation on X* defined by
x=y if "(p, x, q) = T*(p, y, q) for all p, g=0.

Lemma 2.6 Let (Q, X, 7) be a TL-fsm. Then =
is a congruence relation on X*.

Proof Clearly = is an equivalence relation on X*.
Let z&X* and x =y. Then for all p, ¢g=Q,

f(p’ XZ, q)=V{T(T+(P, X, r), f(r» Z, 4))“'EQ}
=V{T(T'(p, . n), T°(r, z, @)1 rEQ}
=7'(p, ¥z, q)

by Proposition 2.5. So xz=yz. Similarly zx=zy. Thus
= is a congruence relation on X*.

Given a TL-fsm M=(Q, X, 1), we will
X*1x=y} by [x] where x&X* and X*/=
X*} by S(AM).

write {yE
={x]1xE

Theorem 2.7 Let M=(Q, X, 7) be a TL-fsm. Then
S(M) is a semigroup, where the binary operation on
S(M) is defined by [x][y]=[xy].

Proof Clearly the operation is well-defined
because = is a congruence relation by Lemma 2.6,
and is associative. So S(_M) is a semigroup.

Remark In general S(_M) is not finite in Theorem
2.7. But if we let T=A and L=[0, 1], then S(_M) is

always finite.

Definition 2.8 A TL-fsm (Q, S, p) is called a TL-
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transformation semigroup if S is a semigroup and if it
satisfies the following:

@ pp. wv, @)=V {T(p(p, u, r), p(r, v, @) | rEQ} for
all p, g€0 and u, vES.

(ii) For u, vES, if plp,u.q)=p(p,v.q) for all p, g=Q,
then u=v.

When a TL-transformation semigroup $=((Q, S, p) is
regarded as a TL-fsm (Q, S, 7,) by taking 7, =7,*=p,
we will write it by SM(9.

Proposition 2.5 and Theorem 2.7 seem to suggest
that a TL-fsm M=(Q, X, ©) naturally induces a TL-
transformation semigroup (Q, S(M), p,) where p, is
defined by pAp, [x], ¢) = T+ (p, x, q). We call (Q, S(_),
po) by the TL-transformation semigroup induced by M
and denote it by TS(_M).

3. Coverings

Definition 3.1 Let M, =(Q,, X, 1) and M, =(Q,,
X,, T,) be TL-finite state machines. If £: X,—X, is a
function and 7n: Q—Q, is a surjective partial function
SUCh that Tl+(n(p)’ X, 77(‘1))3 '52+(P’ é(x)s CI) for all P-4
in the domain of 77 and x&X*, then we say that (17, &)
is a covering of M, by M, and that M, covers M, and
denote by M, <_M,. Moreover, if the inequality
always turns out equality, then we say that (7, &) is a
complete covering of _M, by M, and that M,
completely covers M; and denote by A, < M,

We will write the natural semigroup homomorphism
from X,* to X,* induced by & by £ for convenience
sake.

Example 3.2 ILet M=(Q, X, 1) be a TL-fsm.
Define an equivalence relation ~ on X by a ~ b if and
only if #p, a, ¢)=1p, b, ¢ for all p, ¢=Q.
Construct a TL-fsm M, =(Q, X/~, ) by defining
T(p, [al, @) = Up, a, q). Now define &: X =X/~ by
&a)=[a] and n=1, Then (1, & is a complete
covering of M by M, clearly.

Definition 3.3 Let 5=(Q,, S, p)) and $=(Q,, S,,
p») be TL-transformation semigroups. If n1: 0, <Q, is
a surjective partial function and for each s<S; there
exists £, £ S, such that p,(n(p), s, 1(9))=p:Ap, t,, q) for
all p, g in the domain of 7, then we say that 17 is a
covering of &) by §, and that G, covers § and denote
by £ =< 6. Moerover, if the inequality always turns out
equality then we say that 1 is a complete covering of
8 by & and that G, completely covers £, and denote
by §=<.G.

Proposition 3.4 (1) Let M;,, M, and M; be TL-
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finite state machines. If _M, <_U; [resp. M, < Al]
and M, < M, [resp. M= AM;], then M, < W, [resp.
M= ML

(2) Let &, & and & be TL-transformation
semigroups. If § <9 [resp. G <, 5’2] and G <.G
[resp. & <.G], then & < GQfresp. 5= 4]

Proof It is trivial.

Theorem 3.5 Let M=(Q,, X, 7)) and A,=(0Q>,
X, ) be TL-finite state machines such that M, < _Al,
with covering (1, &. Then TS(M,)<TS(A,).
Moreover, if M, <. M, and 1 is a function, then
TS(M)=. TS( M.

Proof Let a,, -, a,€X,. Then we have

p‘L’l(rI(P)» [ah T, an]a r’(p))

= T|+(n(l’)~ al» T, Ay 77(17))

= V{T(a(p), a, r'), T, @, ), 6. a
ne)»r/ €0}

VAT(n(np), ai, n0rD)), (N0, ax ),
T](n(rrr~l), ay, 77(61)) | r,EQ}
because 7 is surjective (Q denotes the domain ot 1)}
S\/{T(TZ(Pv é(al)s ), ﬂl(rl’ ‘:(az)s r),

ot &an) @) | REQ)
—\/{T(TZ(P’ &a), n), fAGH Hay), 1),
Tz(rn-ls é(an)’ Q)) ' r,EQz}

= TZ+(ps é(al) e é(an)v ‘1)
= 5*(17, é(al Cl,,), 61)
=p‘l'_’(pv [é(al an)]’ CI)

for all p, g in the domain of 1. Hence 7 is a covering
of TS(M,) by TS(_A,). Now let M=, M, and 17 a
function. Then the first inequality in the first part of
the proof turns out equality because ;< _Al,. And
the second inequality in the first part of the proof turns
out equality because the domain of 7n is Q,. This
completes the proof.

4. Products

In this section, we consider restricted direct products
and full directed products of TL-finite state machines
and TL-transformation semigroups.

Definition 4.1 Let M, =(Q,, X, 7,) and A= (Q>,
X, 1) be TL-finite state machines. The restricted direct
product A, Ay M, of M and A, is the TL-fsm (Q, X
0, X, T Ar,) with

(T A (PP a, (g1, R)=T(T(P1, a, q)), Tp2, a, 42)).

Clearly (Q,XQ,, X, 1y \;T) is a TL-fsm.

Lemma 4.2 Let M =(Q,, X, ) and AL= (0>, X,
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7,) be TL-finite state machines. Then for (p,, p»).(qi,
G)EQ X, and xEXT,

(AP )y X (G g)=T(T (P, x, q)).
T (P2 X, G2))
Proof Let x=a,a,"*" a, where a,, a», ***, a,EX.
Then we have
(TN (p1, pa). X, (g1, o)
= AP, P a, (g q2))
=VATUT A )1, pa)s a1, o)) (T A 7B, 1),
a, (1, 1) (O AT (Fayts Fin2)y G (15 G2))
[, r)E0 X Qs
=VAT(t(p), ai, 1), Bpe. ay, 1)), T(T(r, az, 1),
o, Az r22))s " T(0(Foens e 1)y BT e
@) €0, 1€ 0o}

= TVAT(py, an, r) oty G 70T (Fats oy

g r €0 LV AT((p,, ay, 1), T, G, ),
‘pl(r(u-llZ’ a,, %)) I riZEQl)
(o' (p), a1 = an QT2 A aw q2))

(o (., X, q1), &P X, g)
for all p;, €0, and p,, ¢:<0-.

Definition 4.3 Let 4=(Q,, S|, p)) and &= (0>, S,,
0.) be TL-transformation semigroups such that there
exists a free semigroup F with epimorphisms 6,: F—
S, and 6,: F— S,. The restricted direct product & A
& of & and SG(with respect to 6, and 8,) is the TL-
transformation semigroup (Q, X Qs, S, pi Ay py) with
S=F/R NR,) where R, and R, are the equivalence
relations on F defined by 6, and 6, respectively, and

(o NP1, p2), [x), (g1 g)=T(p\(p,, [xlr 1)
PP [X]ry q2)).

Theorem 4.4 Let M,=(Q,, X, 1,) and AL,=(Q,, X,
T,) be TL-finite state machines. Then TS(M;, Ay -
M)=TS(MOA 4 TS().

Proof Let TS(M)=(01, X*/R\, p1). TS(_My)=(Q>,
X*IR,, po) and TS(AM A AML)=(Q, X 0a, XH/R, p). Let
a,, a,<X;. Then we have

Ppy, pa)s ey ale, (g1, g2)
(G Ay P p)s ar o an (g1 g2)
Tt p, ar = a4 g T P2 a  ay qo)

by Lemma 4.2
T(p\(pila, -+ aude, q) popala; - gy G2))
DN PPy, play - adr (g1 g2)

for all p,, ¢ <@, and p;, ¢ Q.

il

Definition 4.5 Let _\,=(Q,, X, 1) and _AL=(Q,,
X, ) be TL-finite state machines. The full direct
product M, X, M, of _U; and _A; is the TL-fsm (Q, X
Q. Xi XX, 1 X4 ) with (7. X0) (1, p2)(a, b)(q,
g)=I(t(p\, a, q1), B2 b, g2)).
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Clearly (Q,XQ,, X\ XX;, 7,Xsn) is a TL-fsm.

Lemma 4.6 Let M,=(Q,, X,, 1) and M,=(Q,, X,,
T,) be TL-finite state machines. Then (7, X, %)*((pi,
P, (@i a, by by, (g, @) = T(5*(py, a** a,, 1),
TPy by by, q) for all ay, -, a,€X,, by, b,E
Xo, P, €0, and p;, <0,

Proof Let q, -, a,€X, and b,,* b,EX,. Then
we have

(6 X)) ((p1, p)(a, =+ a, by == by, (g1, q2))
= VTG X70)((p1, p2), (@, D), (r1y, 1)), (5 XT)
((r11, 2, (@2, ba), (a1, 122" (T X BN Tt T2
(an by, (g1, @) (ry, 72)E0, X0,
= VAT (u(p, a1, 11y, P2 bi, 1)) TIG(r, G, 1),
T(ria, by, 12,0, TGy G @1)y B(Fnos ba
G €01, e}
= T(V{T(t(p, a;, my), 'Fl(rn, @, 1), T eyt A
g 1 &0}, V{T(%(p2, by, 1), T(riz, by, F),es
Tz b @) T2 S0}
= (' (. &' @ q)s (P2 b b @)

for all p;, g €Q, and p,, ¢:€Q,.

Definition 4.7 Let $=(Q,, S\, p\) and G=(0>, S»,
p») be TL-transformation semigroups. The full direct
product & X ;G of & and &, is the TL-transformation
semigroup (Q X @, S X817 Xrry) with (p; X70,)
(1, p2) (u, V), (g1, @)=T(Pi(p1, u, q1), PP, Vs G2))-

Theroem 4.8 Let M=(Q,, X;, 1) and M=(Q,,
X,, ) be TL-finite state machines. Then TS(M, X
M) = TSM) X FTS(M,).

Proof Let TS(M)=(Q:, X,\*/R,, p)), TS(M)=(Q:,
X2*/R,, po) and TS( M X 7 Mp)=(Q) X Oa, (X, XX+
Rs;, py). Let ay,*+, a,<X, and b,-*, b,EX,. Then we
have

ppi po), lar -
(X)) (py, plar

Ay, bl”. bn)]R}; (qla C]z))
Ay, bl-” bn)v (qla Q2))

= T(v*(py, av an @), B P2 by by, @)
by Lemma 4.6
= T(p(p1, lar = aldry, @)y P2P2lDy = Bulry 42))

= (1 XXy, po), day = Aulrys [By - bn]Rz)v G, g2))
for all p, ¢;€Q, and p;, €0

Proposition 4.9 Let M,=(Q,, X, 1) and My=(Q»,
X, T,) be T-fuzzy state machines. Then the following
hold:

(1) JHI /\T leﬁ(. Jul XT JM}

(2) TSCM A M) TS(M X 7 AL).
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Proof (1) Let =19 xo, and define &: X=>XXX
by &a)=(a, a). Then (n, &) is a complete covering of
M A M, by M XMy clearly.

(2) It is clear from (1) and Theorem 3.5.

The following propositions are direct consequences
of the associativity of f-norm of T.

Proposition 4.10 Let M, M;and _; be TL-finite
state machines.

(l ) (Jh A T uuz) A T uu3 = u‘M. A 7(uuz A 71/“3).

(2) (‘/ul X T\Juz) Xz L/H} = Jul X 1(Ju2 Xr uH;)

Proposition 4.11 Let &, & and G be TL-
transformation semigroups. Then the following hold:

(D) (GAT N G = GALGNT S).

(2) (G X)X G = X AGX T &)
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