Decompositions of transformation semigroups

Sung-Jin Cho and Seok-Tae Kim*

Department of Applied Mathematics, Pukyong National University *Department of Telematics Engineering, Pukyong National University

ABSTRACT

We introduce the concepts of TL-finite state machines, TL-transformation semigroups and coverings, and several decompositions of transformation semigroups and investigate some of their algebraic structures.

1. Introduction

Since Wee[8] in 1967 introduced the concept of fuzzy automata following Zadeh [9], fuzzy automata theory has been developed by many researchers. Recently Malik et al. [4-6] introduced the concepts of fuzzy state machines and fuzzy transformation semigroups based on Wee's concept of fuzzy automata and related concepts and applied algebraic technique. In [2,3] Cho et al. introduced the notion of T-fuzzy state machine and T-fuzzy transformation semigroup that are extensions of fuzzy state machine and fuzzy transformation semigroup, respectively. In this paper, we introduce the concepts of TL-finite state machines and TL-transformation semigroups, coverings, restricted direct products and full direct products of TL-finite state machines and TL-transformation semigroups that are generalizations of crisp concepts in algebraic automata theory and investigate their algebraic structures.

For the terminology in (crisp) algebraic automata theory, we refer to [1].

2. TL-finite state machines and TL-transformation semigroups

We let L denote a complete lattice that contains at least two distinct elements. The meet, join, and partial ordering will be written as \land , \lor , and \leq , respectively. We also write 1 and 0 for the greatest element and least element of L, respectively.

Definition 2.1 A triple $\mathcal{M} = (Q, X, \tau)$ where Q and X are finite nonempty sets and τ is an L-subset of $Q \times X \times Q$, i.e., τ is a function from $Q \times X \times Q$ to L, is called an L-finite state machine.

Let $\mathcal{M} = (Q, X, \tau)$ be an *L*-finite state machine. Then *Q* is called the set of states and *X* is called the set of input symbols. Let X^+ denote the set of all words of elements of X of finite length with the empty word λ .

Definition 2.2 [7] A binary operation T on L is called a t-norm if

- (1) T(a, 1) = a,
- (2) $T(a, b) \le T(a, c)$ whenever $b \le c$,
- (3) T(a, b) = T(b, a),
- (4) T(a, T(b, c)) = T(T(a, b), c) for all $a, b, c \in L$.

From this definition one gets immediately T(0, a) = 0 and $T(a, b) \le a \land b$ for all $a, b \in L$. A t-norm T on L is said to be \lor -distributive if $T(a, b \lor c) = T(a, b) \lor T(a, c)$ for all $a, b, c \in L$. And T is said to be positive-definite if T(a, b) > 0 for all $a, b \in L \setminus \{0\}$.

Throughout this paper, T shall mean a positive-definite and \vee -distributive t-norm on L unless otherwise specified.

We will denote $T(a_1, T(a_2, \dots, T(a_{n-2}, T(a_{n-1}, a_n))))$ by $T(a_1, \dots, a_n)$ where $a_1, \dots, a_n \in L$.

Example 2.3 Let $L=[0, 1] \times [0, 1]$. Define a partial order \leq on L by for $a=(a_1, a_2)$, $b=(b_1, b_2) \in L$, $a \leq b$ if $a_1 \leq b_1$ and $a_2 \leq b_2$. Define $T(a, b) = (a_1b_1, a_2b_2)$ where $a=(a_1, a_2)$, $b=(b_1, b_2) \in L$. Then T is a positive-definite and \vee -distributive t-norm on L.

Definition 2.4 Let $\mathcal{M}=(Q, X, \tau)$ be an L-finite state machine. Define $\tau^+: Q \times X^+ \times Q \to L$ by

$$\tau^{+}(q, \lambda, p) = \begin{cases}
1 & \text{if } q = p \\
0 & \text{if } q \neq p
\end{cases}$$

$$\tau^{+}(p, a_{1}, \dots, a_{n}, q)$$

$$= \bigvee \{T(\tau(p, a_{1}, r_{1}), \tau(r_{1}, a_{2}, r_{2}), \dots, \tau(r_{n-2}, a_{n-1}, r_{n-1}), \tau(r_{n-1}, a_{n}, q)\} \mid r_{j} \in Q\}$$

where $p, q \in Q$ and $a_1, \dots, a_n \in X$. When T is applied to \mathcal{M} as above, \mathcal{M} is called a TL-finite state machine(briefly, a TL-fsm).

Remark In Definition 2.4 if we let $T = \land$ and L = [0, 1], then the concept of a TL-fms is the concept of [5].

Proposition 2.5 Let (Q, X, τ) be a *TL*-fsm. Then

 $\tau^{+}(p, xy, q) = \bigvee \{ T(\tau^{+}(p, x, r), \tau^{+}(r, y, q)) \mid r \in Q \}$ for all $p, q \in Q$ and $x, y \in X^{+}$.

Proof Let p, $q \subseteq Q$. Let $x = a_1 \cdots a_n$ and $y = b_1 \cdots b_m$ with $a_1, \dots, a_n, b_1, \dots, b_m \in X$. Then

$$\begin{array}{l} \vee \{T(\tau^{\bullet}(p,\ x,\ r),\ \tau^{\bullet}(r,\ y,\ q))\ |\ r \in Q\} \\ = \ \vee \{T(\tau^{\bullet}(p,\ a_1\ \cdots\ a_n,\ r),\tau^{\bullet}(r,\ b_1\cdots\ b_m,\ q))\ |\ r \in Q\} \\ = \ \vee \{T(\vee \{T(\pi(p,\ a_1,\ q_1),\cdots,\ \tau\ (q_{n-1},\ a_n,\ r))\ |\ q_1,\cdots,\ q_{n-1} \in Q\}, \\ \ \vee \{T(\pi(r,\ b_1,\ q_n),\cdots,\pi(q_{n+m-1},\ b_m,\ q))\ |\ q_n,\cdots\ q_{n+m-1} \\ \in Q\})\ |\ r \in Q\} \qquad \text{by Definition 2.4} \\ = \ \vee \{T(\pi(p,\ a_1,\ q_1),\cdots,\ \pi(q_{n-1},\ a_n,\ r),\ \pi(r,\ b_1,\ q_n),\cdots,\ \pi(r,\ b_1,\ q_n),\cdots,\ \pi(q_{n+m-1},\ b_m,\ q))\ |\ q_1,\cdots\ q_{n+m-1},\ r \in Q\} \\ = \ \tau^{\bullet}(p,\ a_1\cdots\ a_nb_1\cdots b_m,\ q) \qquad \text{by Definition 2.4} \\ = \ \tau^{\bullet}(p,\ xy,\ q). \end{array}$$

For a *TL*-fsm, let \equiv be a relation on X^+ defined by $x \equiv y$ if $\tau^+(p, x, q) = \tau^+(p, y, q)$ for all $p, q \in Q$.

Lemma 2.6 Let (Q, X, τ) be a TL-fsm. Then \equiv is a congruence relation on X^+ .

Proof Clearly \equiv is an equivalence relation on X^+ . Let $z \in X^+$ and $x \equiv y$. Then for all $p, q \in Q$,

$$\tau^{+}(p, xz, q) = \forall \{T(\tau^{+}(p, x, r), \tau^{+}(r, z, q)) \mid r \in Q\}
= \forall \{T(\tau^{+}(p, y, r), \tau^{+}(r, z, q)) \mid r \in Q\}
= \tau^{+}(p, yz, q)$$

by Proposition 2.5. So $xz \equiv yz$. Similarly $zx \equiv zy$. Thus \equiv is a congruence relation on X^+ .

Given a *TL*-fsm $\mathcal{M}=(Q, X, \tau)$, we will write $\{y \in X^+ \mid x \equiv y\}$ by [x] where $x \in X^+$ and $X^+/\equiv =\{[x] \mid x \in X^+\}$ by $S(\mathcal{M})$.

Theorem 2.7 Let $\mathcal{M}=(Q, X, \tau)$ be a TL-fsm. Then $S(\mathcal{M})$ is a semigroup, where the binary operation on $S(\mathcal{M})$ is defined by [x][y]=[xy].

Proof Clearly the operation is well-defined because \equiv is a congruence relation by Lemma 2.6, and is associative. So $S(\mathcal{M})$ is a semigroup.

Remark In general $S(\mathcal{M})$ is not finite in Theorem 2.7. But if we let $T= \land$ and L=[0, 1], then $S(\mathcal{M})$ is always finite.

Definition 2.8 A TL-fsm (Q, S, ρ) is called a TL-

transformation semigroup if S is a semigroup and if it satisfies the following:

- (i) $\rho(p, uv, q) = \bigvee \{ T(\rho(p, u, r), \rho(r, v, q)) \mid r \in Q \}$ for all $p, q \in O$ and $u, v \in S$.
- (ii) For $u, v \in S$, if $\rho(p,u,q) = \rho(p,v,q)$ for all $p, q \in Q$, then u = v.

When a *TL*-transformation semigroup $\mathcal{G}=(Q, S, \rho)$ is regarded as a *TL*-fsm (Q, S, τ_{ρ}) by taking $\tau_{\rho} = \tau_{\rho}^{+} = \rho$, we will write it by $SM(\mathcal{G})$.

Proposition 2.5 and Theorem 2.7 seem to suggest that a *TL*-fsm $\mathcal{M}=(Q, X, \tau)$ naturally induces a *TL*-transformation semigroup $(Q, S(\mathcal{M}), \rho_{\tau})$ where ρ_{τ} is defined by $\rho_{\tau}(p, [x], q) = \tau^{+}(p, x, q)$. We call $(Q, S(\mathcal{M}), \rho_{\tau})$ by the *TL*-transformation semigroup induced by \mathcal{M} and denote it by $TS(\mathcal{M})$.

3. Coverings

Definition 3.1 Let $\mathcal{M}_1 = (Q_1, X_1, \tau_1)$ and $\mathcal{M}_2 = (Q_2, X_2, \tau_2)$ be TL-finite state machines. If $\xi: X_1 \rightarrow X_2$ is a function and $\eta: Q \rightarrow Q_1$ is a surjective partial function such that $\tau_1^+(\eta(p), x, \eta(q)) \leq \tau_2^+(p, \xi(x), q)$ for all p, q in the domain of η and $x \in X_1^+$, then we say that (η, ξ) is a covering of \mathcal{M}_1 by \mathcal{M}_2 and that \mathcal{M}_2 covers \mathcal{M}_1 and denote by $\mathcal{M}_1 \leq \mathcal{M}_2$. Moreover, if the inequality always turns out equality, then we say that (η, ξ) is a complete covering of \mathcal{M}_1 by \mathcal{M}_2 and that \mathcal{M}_2 completely covers \mathcal{M}_1 and denote by $\mathcal{M}_1 \leq_c \mathcal{M}_2$.

We will write the natural semigroup homomorphism from X_1^+ to X_2^+ induced by ξ by ξ for convenience sake.

Example 3.2 Let $\mathcal{M}=(Q, X, \tau)$ be a *TL*-fsm. Define an equivalence relation \sim on X by $a \sim b$ if and only if $\tau(p, a, q) = \tau(p, b, q)$ for all $p, q \in Q$. Construct a *TL*-fsm $\mathcal{M}_1 = (Q, X/\sim, \tau^\sim)$ by defining $\tau^\sim(p, [a], q) = \tau(p, a, q)$. Now define $\xi: X \to X/\sim$ by $\xi(a) = [a]$ and $\eta = 1_Q$. Then (η, ξ) is a complete covering of \mathcal{M} by \mathcal{M}_1 clearly.

Definition 3.3 Let $\mathcal{L}_1=(Q_1, S_1, \rho_1)$ and $\mathcal{L}_2=(Q_2, S_2, \rho_2)$ be TL-transformation semigroups. If $\eta: Q_2 \leq Q_1$ is a surjective partial function and for each $s \in S_1$ there exists $t_s \in S_2$ such that $\rho_1(\eta(p), s, \eta(q)) \leq \rho_2(p, t_s, q)$ for all p, q in the domain of η , then we say that η is a covering of \mathcal{L}_1 by \mathcal{L}_2 and that \mathcal{L}_2 covers \mathcal{L}_1 and denote by $\mathcal{L}_1 \leq \mathcal{L}_2$. Moerover, if the inequality always turns out equality then we say that η is a complete covering of \mathcal{L}_1 by \mathcal{L}_2 and that \mathcal{L}_2 completely covers \mathcal{L}_1 and denote by $\mathcal{L}_1 \leq \mathcal{L}_2$.

Proposition 3.4 (1) Let \mathcal{M}_1 , \mathcal{M}_2 and \mathcal{M}_3 be TL-

finite state machines. If $\mathcal{M}_1 \leq \mathcal{M}_2$ [resp. $\mathcal{M}_1 \leq_{\epsilon} \mathcal{M}_2$] and $\mathcal{M}_2 \leq_{\epsilon} \mathcal{M}_3$ [resp. $\mathcal{M}_2 \leq_{\epsilon} \mathcal{M}_3$], then $\mathcal{M}_1 \leq_{\epsilon} \mathcal{M}_3$ [resp. $\mathcal{M}_1 \leq_{\epsilon} \mathcal{M}_3$].

(2) Let S_1 , S_2 and S_3 be TL-transformation semigroups. If $S_1 \leq S_2$ [resp. $S_1 \leq_c S_2$] and $S_2 \leq S_3$ [resp. $S_2 \leq_c S_3$], then $S_1 \leq_c S_3$ [resp. $S_1 \leq_c S_3$].

Proof It is trivial.

Theorem 3.5 Let $\mathcal{M}_1 = (Q_1, X_1, \tau_1)$ and $\mathcal{M}_2 = (Q_2, X_2, \tau_2)$ be TL-finite state machines such that $\mathcal{M}_1 \leq \mathcal{M}_2$ with covering (η, ξ) . Then $TS(\mathcal{M}_1) \leq TS(\mathcal{M}_2)$. Moreover, if $\mathcal{M}_1 \leq_c \mathcal{M}_2$ and η is a function, then $TS(\mathcal{M}_1) \leq_c TS(\mathcal{M}_2)$.

Proof Let $a_1, \dots, a_n \in X_1$. Then we have

```
\begin{split} &\rho_{\mathcal{T}_{1}}(\eta(p), \ [a_{1}, \ \cdots, \ a_{n}], \ \eta(p)) \\ &= \tau_{1}^{+}(\eta(p), \ a_{1}, \ \cdots, \ a_{n}, \ \eta(p)) \\ &= \bigvee \{ \mathcal{T}(\tau_{1}(\eta(p), \ a_{1}, \ r_{1}'), \ \tau_{1}(r_{1}', \ a_{2}, \ r_{2}'), \cdots, \ \tau_{1}(r_{n-1}', \ a, \ \eta(p)) \mid r_{i}' \in \mathcal{Q}_{1} \} \\ &= \bigvee \{ \mathcal{T}(\tau_{1}(\eta(p), \ a_{1}, \ \eta(r_{1})), \ \tau_{1}(\eta(r_{1}), \ a_{2}, \eta(r_{2})), \cdots, \ \tau_{1}(\eta(r_{n-1}), \ a_{n}, \ \eta(q)) \mid r_{i} \in \mathcal{Q} \} \\ &\text{because } \eta \text{ is surjective } (\mathcal{Q} \text{ denotes the domain of } \eta) \} \\ &\leq \bigvee \{ \mathcal{T}(\tau_{2}(p, \ \xi(a_{1}), \ r_{1}), \ \tau_{2}(r_{1}, \ \xi(a_{2}), \ r_{2}), \cdots, \ \tau_{2}(r_{n-1}, \ \xi(a_{n}), \ q)) \mid r_{i} \in \mathcal{Q} \} \\ &\leq \bigvee \{ \mathcal{T}(\tau_{2}(p, \ \xi(a_{1}), \ r_{1}), \ \tau_{2}(r_{1}, \ \xi(a_{2}), \ r_{2}), \cdots, \ \tau_{2}(r_{n-1}, \ \xi(a_{n}), \ q)) \mid r_{i} \in \mathcal{Q}_{2} \} \\ &= \tau_{2}^{+}(p, \ \xi(a_{1}), \ \cdots, \ \xi(a_{n}), \ q) \\ &= \tau_{2}^{+}(p, \ \xi(a_{1}, \ \cdots, \ a_{n}), \ q) \\ &= \rho_{\mathcal{D}}(p, \ [\xi(a_{1}, \ \cdots, \ a_{n})], \ q) \end{split}
```

for all p, q in the domain of η . Hence η is a covering of $TS(\mathcal{M}_1)$ by $TS(\mathcal{M}_2)$. Now let $\mathcal{M}_1 \leq_c \mathcal{M}_2$ and η a function. Then the first inequality in the first part of the proof turns out equality because $\mathcal{M}_1 \leq_c \mathcal{M}_2$. And the second inequality in the first part of the proof turns out equality because the domain of η is Q_2 . This completes the proof.

4. Products

In this section, we consider restricted direct products and full directed products of *TL*-finite state machines and *TL*-transformation semigroups.

Definition 4.1 Let $\mathcal{M}_1 = (Q_1, X, \tau_1)$ and $\mathcal{M}_2 = (Q_2, X, \tau_2)$ be TL-finite state machines. The restricted direct product $\mathcal{M}_1 \wedge_T \mathcal{M}_2$ of \mathcal{M}_1 and \mathcal{M}_2 is the TL-fsm $(Q_1 \times Q_2, X, \tau_1 \wedge_T \tau_2)$ with

 $(\tau_1 \wedge_T \tau_2)((p_1, p_2), a, (q_1, q_2)) = T(\tau_1(p_1, a, q_1), \tau_2(p_2, a, q_2)).$ Clearly $(Q_1 \times Q_2, X, \tau_1 \wedge_T \tau_2)$ is a TL-fsm.

Lemma 4.2 Let $\mathcal{M}_1 = (Q_1, X, \tau_1)$ and $\mathcal{M}_2 = (Q_2, X, \tau_2)$

 τ_2) be *TL*-finite state machines. Then for $(p_1, p_2), (q_1, q_2) \in Q_1 \times Q_2$ and $x \in X^+$,

$$(\tau_1 \wedge_T \tau_2)^+((p_1, p_2), x, (q_1, q_2)) = T(\tau_1^+(p_1, x, q_1), \tau_2^+(p_2, x, q_2))$$

Proof Let $x = a_1 a_2 \cdots a_n$ where $a_1, a_2, \cdots, a_n \in X$. Then we have

$$(\tau_{1} \wedge_{T} \tau_{2})^{+}((p_{1}, p_{2}), x, (q_{1}, q_{2}))$$

$$=(\tau_{1} \wedge_{T} \tau_{2})^{+}((p_{1}, p_{2}), a_{1} \cdots a_{n}, (q_{1}, q_{2}))$$

$$= \bigvee \{T((\tau_{1} \wedge_{T} \tau_{2})((p_{1}, p_{2}), a_{1}, (r_{11}, r_{12}), (\tau_{1} \wedge_{T} \tau_{2})((r_{11}, r_{12}), a_{2}, (r_{21}, r_{22})), \dots, (\tau_{1} \wedge_{T} \tau_{2})((r_{(n-1)1}, r_{(n-1)2}), a_{n}, (q_{1}, q_{2}))$$

$$|(r_{11}, r_{12}) \in Q_{1} \times Q_{2}\}$$

 $= \bigvee \{ T(\tau_1(p_1, a_1, r_{11}), \tau_2(p_2, a_1, r_{12})), T(\tau_1(r_{11}, a_2, r_{21}), \tau_2(r_{12}, a_2, r_{22})), \dots, T(\tau_1(r_{(n-1)1}, a_n, q_1), \tau_2(r_{(n-1)2}, a_n, q_2)) \mid r_{i1} \in Q_1, r_{i2} \in Q_2 \}$

= $T(\vee \{ T(\tau_1(p_1, a_1, r_{11}), \tau_1(r_{11}, a_2, r_{21}), \dots, \tau_1(r_{(n-1)1}, a_n, q_1)) | r_{i1} \in Q_1 \}, \vee \{ T(\tau_2(p_2, a_1, r_{12}), \tau_1(r_{12}, a_2, r_{22}), \dots, \tau_2(r_{(n-1)2}, a_n, q_2)) | r_{i2} \in Q_1)$

 $= T(\tau_1^+(p_1, a_1 \cdots a_n, q_1), \tau_2^+(p_2, a_1 \cdots a_n, q_2))$

 $= T(\tau_1^+(p_1, x, q_1), \tau_2^+(p_2, x, q_2))$

for all p_1 , $q_1 \in Q_1$ and p_2 , $q_2 \in Q_2$.

Definition 4.3 Let $S_1 = (Q_1, S_1, \rho_1)$ and $S_2 = (Q_2, S_2, \rho_2)$ be TL-transformation semigroups such that there exists a free semigroup F with epimorphisms $\theta_1 : F \rightarrow S_1$ and $\theta_2 : F \rightarrow S_2$. The restricted direct product $S_1 \land TS_2$ of S_1 and S_2 (with respect to S_1 and S_2 is the S_1 transformation semigroup S_2 , S_1 , S_2 , S_2 , S_3 , S_4 , S_4 , S_4 , where S_4 and S_4 are the equivalence relations on S_4 defined by S_4 and S_4 respectively, and S_4 and S_4 respectively, and S_4 respectively, S_4 and S_4 respectively. The sum of S_4 respectively, S_4 respectively, S_4 respectively, and S_4 respectively.

Theorem 4.4 Let $\mathcal{M}_1 = (Q_1, X, \tau_1)$ and $\mathcal{M}_2 = (Q_2, X, \tau_2)$ be *TL*-finite state machines. Then $TS(\mathcal{M}_1 \wedge_T + \mathcal{M}_2) = TS(\mathcal{M}_1) \wedge_T TS(\mathcal{M}_2)$.

Proof Let $TS(\mathcal{M}_1)=(Q_1, X^+/R_1, \rho_1)$, $TS(\mathcal{M}_2)=(Q_2, X^+/R_2, \rho_2)$ and $TS(\mathcal{M}_1 \wedge_{\mathcal{T}} \mathcal{M}_2)=(Q_1 \times Q_2, X^+/R, \rho)$. Let $a_1, \dots, a_n \in X_1$. Then we have

```
\rho((p_1, p_2), [a_1 \cdots a_n]_R, (q_1, q_2)) 

= (\tau_1 \wedge_T \tau_2)^+((p_1, p_2), a_1 \cdots a_n, (q_1, q_2)) 

= T(\tau_1^+(p_1, a_1 \cdots a_n, q_1), \tau_2^+(p_2, a_1 \cdots a_n, q_2)) 

by Lemma 4.2 

= T(\rho_1(p_1, [a_1 \cdots a_n]_{R_1}, q_1), \rho_2(p_2, [a_1 \cdots a_n]_{R_2}, q_2)) 

= (\rho_1 \wedge_T \rho_2)((p_1, p_2), [a_1 \cdots a_n]_R, (q_1, q_2))
```

for all p_1 , $q_1 \in Q_1$ and p_2 , $q_2 \in Q_2$.

Definition 4.5 Let $\mathcal{M}_1=(Q_1, X, \tau_1)$ and $\mathcal{M}_2=(Q_2, X, \tau_2)$ be TL-finite state machines. The full direct product $\mathcal{M}_1 \times_T \mathcal{M}_2$ of \mathcal{M}_1 and \mathcal{M}_2 is the TL-fsm $(Q_1 \times Q_2, X_1 \times X_2, \tau_1 \times_T \tau_2)$ with $(\tau_1 \times_T \tau_2)((p_1, p_2), (a, b), (q_1, q_2)) = T(\tau_1(p_1, a, q_1), \tau_2(p_2, b, q_2))$.

Clearly $(Q_1 \times Q_2, X_1 \times X_2, \tau_1 \times_T \tau_2)$ is a *TL*-fsm.

Lemma 4.6 Let $\mathcal{M}_1=(Q_1, X_1, \tau_1)$ and $\mathcal{M}_2=(Q_2, X_2, \tau_2)$ be TL-finite state machines. Then $(\tau_1 \times_T \tau_2)^+((p_1, p_2), (a_1 \cdots a_n, b_1 \cdots b_n), (q_1, q_2)) = T(\tau_1^+(p_1, a_1 \cdots a_n, q_1), \tau_2^+(p_2, b_1 \cdots b_n, q_2))$ for all $a_1, \cdots, a_n \in X_1, b_1, \cdots b_n \in X_2, p_1, q_1 \in Q_1$ and $p_2, q_2 \in Q_2$.

Proof Let $a_1, \dots, a_n \in X_1$ and $b_1, \dots b_n \in X_2$. Then we have

- $(\tau_1 \times_T \tau_2)^+((p_1, p_2), (a_1 \cdots a_n, b_1 \cdots b_n), (q_1, q_2))$
- $= \bigvee \{ T((\tau_1 \times_T \tau_2)((p_1, p_2), (a_1, b_1), (r_{11}, r_{12})), (\tau_1 \times_T \tau_2) \\ ((r_{11}, r_{12}), (a_2, b_2), (r_{21}, r_{22})), \dots, (\tau_1 \times_T \tau_2)((r_{(n-1)1}, r_{(n-1)2}), \\ (a_n, b_n), (q_1, q_2))) \mid (r_{i1}, r_{i2}) \in Q_1 \times Q_2 \}$
- = $\bigvee \{ T(T(\tau_1(p_1, a_1, r_{11}), \tau_2(p_2, b_1, r_{12})), T(\tau_1(r_{11}, a_2, r_{22}), \tau_2(r_{12}, b_2, r_{22})), \cdots, T(\tau_1(r_{(n-1)1}, a_n, q_1), \tau_2((r_{(n-1)2}, b_n, q_2)) \mid r_{i1} \in Q_1, r_{i2} \in Q_2 \}$
- $= T(\bigvee \{T(\tau_1(p_1, a_1, r_{11}), \tau_1(r_{11}, a_2, r_{21}), \dots, \tau_1(r_{(n-1)1}, a_n, q_1)) \mid r_{i1} \in Q_1\}, \bigvee \{T(\tau_2(p_2, b_1, r_{12}), \tau_2(r_{12}, b_2, r_{22}), \dots, \tau_2(r_{(n-1)2}, b_n, q_2)) \mid r_{i2} \in Q_2\}$
- = $T(\tau_1^+(p_1, a_1 \cdots a_n, q_1), \tau_2^+(p_2, b_1 \cdots b_n, q_2))$

for all p_1 , $q_1 \in Q_1$ and p_2 , $q_2 \in Q_2$.

Definition 4.7 Let $\mathcal{L}_1=(Q_1, S_1, \rho_1)$ and $\mathcal{L}_2=(Q_2, S_2, \rho_2)$ be *TL*-transformation semigroups. The full direct product $\mathcal{L}_1 \times_T \mathcal{L}_2$ of \mathcal{L}_1 and \mathcal{L}_2 is the *TL*-transformation semigroup $(Q_1 \times Q_2, S_1 \times S_2, \tau_1 \times_T r_2)$ with $(\rho_1 \times_T \rho_2)$ $((p_1, p_2), (u, v), (q_1, q_2)) = T(\rho_1(p_1, u, q_1), \rho_2(p_2, v, q_2))$.

Theroem 4.8 Let $\mathcal{M}_1=(Q_1, X_1, \tau_1)$ and $\mathcal{M}_2=(Q_2, X_2, \tau_2)$ be TL-finite state machines. Then $TS(\mathcal{M}_1 \times_T \mathcal{M}_2) \leq_c TS(\mathcal{M}_1) \times_T TS(\mathcal{M}_2)$.

Proof Let $TS(\mathcal{M}_1) = (Q_1, X_1^+/R_1, \rho_1)$, $TS(\mathcal{M}_2) = (Q_2, X_2^+/R_2, \rho_2)$ and $TS(\mathcal{M}_1 \times_T \mathcal{M}_2) = (Q_1 \times Q_2, (X_1 \times_T X_2) + / R_3, \rho_3)$. Let $a_1, \dots, a_n \in X_1$ and $b_1, \dots, b_n \in X_2$. Then we have

$$\rho_{3}((p_{1}, p_{2}), [(a_{1} \cdots a_{n}, b_{1} \cdots b_{n})]_{R_{3}}, (q_{1}, q_{2}))$$

$$= (\tau_{1} \times_{T} \tau_{2})^{+}((p_{1}, p_{2}), (a_{1} \cdots a_{n}, b_{1} \cdots b_{n}), (q_{1}, q_{2}))$$

 $= T(\tau_1^+(p_1, a_1 \cdots a_n, q_1), \tau_2^+(p_2, b_1 \cdots b_n, q_2))$

= $T(\rho_1(p_1, [a_1 \cdots a_n]_{R_1}, q_1), \rho_2(p_2, [b_1 \cdots b_n]_{R_2}, q_2))$ = $(\rho_1 \times_T \rho_2)((p_1, p_2), ([a_1 \cdots a_n]_{R_1}, [b_1 \cdots b_n]_{R_2}), (q_1, q_2))$

for all p_1 , $q_1 \in Q_1$ and p_2 , $q_2 \in Q_2$.

Proposition 4.9 Let $\mathcal{M}_1 = (Q_1, X, \tau_1)$ and $\mathcal{M}_2 = (Q_2, X, \tau_2)$ be *T*-fuzzy state machines. Then the following hold:

- $(1) \mathcal{M}_1 \wedge_T \mathcal{M}_2 \leq_c \mathcal{M}_1 \times_T \mathcal{M}_2.$
- (2) $TS(\mathcal{M}_1 \wedge_T \mathcal{M}_2)_c$ $TS(\mathcal{M}_1 \times_T \mathcal{M}_2)_c$

- **Proof** (1) Let $\eta = 1_{Q_1 \times Q_1}$ and define $\xi : X \rightarrow X \times X$ by $\xi(a) = (a, a)$. Then (η, ξ) is a complete covering of $\mathcal{M}_1 \wedge_T \mathcal{M}_2$ by $\mathcal{M}_1 \times_T \mathcal{M}_2$ clearly.
 - (2) It is clear from (1) and Theorem 3.5.

The following propositions are direct consequences of the associativity of *t*-norm of *T*.

Proposition 4.10 Let \mathcal{M}_1 , \mathcal{M}_2 and \mathcal{M}_3 be TL-finite state machines.

- $(1) (\mathcal{M}_1 \wedge_T \mathcal{M}_2) \wedge_T \mathcal{M}_3 = \mathcal{M}_1 \wedge_T (\mathcal{M}_2 \wedge_T \mathcal{M}_3).$
- (2) $(\mathcal{M}_1 \times_T \mathcal{M}_2) \times_T \mathcal{M}_3 = \mathcal{M}_1 \times_T (\mathcal{M}_2 \times_T \mathcal{M}_3)$.

Proposition 4.11 Let S_1 , S_2 and S_3 be TL-transformation semigroups. Then the following hold:

- $(1) (\mathcal{S}_1 \wedge_T \mathcal{S}_2) \wedge_T \mathcal{S}_3 = \mathcal{S}_1 \wedge_T (\mathcal{S}_2 \wedge_T \mathcal{S}_3).$
- (2) $(\mathcal{S}_1 \times_T \mathcal{S}_2) \times_T \mathcal{S}_3 = \mathcal{S}_1 \times_T (\mathcal{S}_2 \times_T \mathcal{S}_3)$.

References

- [1] W.M.L. Holcombe, Algebraic automata theory, (Cambridge University Press, 1982).
- [2] S. J. Cho, J. G. Kim and S. T. Kim, On *T*-generalized subsystems of *T*-generalized state machines Far East *J. Math. Sci.* 5(1), 131-151, 1997.
- [3] Y. H. Kim, J. G. Kim and S. J. Cho, Products of T-generalized state machines and T-generalized transformation semigroups, Fuzzy Sets and Systems, 93, 87-97, 1998.
- [4] D. S. Malik, J. N. Mordeson and M. K. Sen, on subsystems of a fuzzy finite state machine, *Fuzzy Sets* and Systems 68, 83-92, (1994).
- [5] D. S. Malik, J. N. Mordeson and M. K. Sen, Semigroups of fuzzy finite state machines, in: P. P. Wang, ed., Advances in Fuzzy Theory and Technology, Vol. II, 87-98, 1994.
- [6] D. S. Malik, J. N. Mordeson and M. K. Sen, Submachines of fuzzy finite state machines, *J. Fuzzy Math.* 4, 781-792, 1994.
- [7] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J Math., 10, 313-334, 1960.
- [8] W. G. Wee, On generalizations of adaptive algorithm and applications of the fuzzy sets concept to pattern classification, Ph. D. Thesis, Purdue Univ., 1967.
- [9] L. A. Zadeh, Fuzzy sets, Inform. Control 8, 338-353, 1965.

조 성 진 (Sung-Jin Cho)

제 6 권 4 호 참조

김 석 태 (Seok-Tae Kim)

제 6 권 4 호 참조

by Lemma 4.6