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Fast Simulation for Excessive Backlogs

in Tandem Networksl)

Jiveon Lee?)

Abstract

We consider a stable tandem network which consists of two M/M/1 nodes and
study the probability that the total backlog exceeds a large level N. Since the
excessive backlog is a rare event, it is difficult to estimate this probability efficiently
by using the crude Monte Carlo simulation. Instead we perform the #A-transform
proposed by McDonald(1999) to obtain the twisted network, in which the node with
the larger load is overloaded. Then we use it to run the fast simulation.
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1. Introduction

We consider two M/M/1 nodes with infinite buffers in tandem with service rates g, and
Uy, respectively. We assume, for stability of the network, that the arrival rate A from outside
satisfies A< p; and A<y, In this paper, we will refer to such a system by a (A, ¢, ¢#)

-network. Fig. 1 depicts a (A, ¢, #2)-network.

node 1 node 2
A
—-O—0O—
Fig. 1. A (4, p,, #,)-network.

A (A, ¢, ug9)-network can be described as a Markov jump process M : = {M(?), t=0}

on S:= NZ, where N denotes the non-negative integers. Let —9; = (x1,x3) €S denote the
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state of M(# where x; represents the queue size (that is the total number of customers

waiting or being served) at node #, i=1, 2. The generator G of M is given as an operator
on a bounded function fon S;

GA%) = MAx 1 +1,x)—Ax1,x2)}
+u(xD){Ax—Lxt D—Axy,x2)}

+u(x){RAx 1, 20— D— Ax1,x2)},

where u,(x;)=py; if x,>0 and O otherwise, and z4(x,) is defined analogously. The
stationary distribution 7 of M is given by

(0) = (1— 1)o7 (1 — p3)05" (1

under the condition that both loads ;=A/y;, t=1,2 are smaller than 1. The equation (1)
implies that, in the steady state, the queue sizes at the different nodes are independent.
Furthermore, the queue size at node ¢ has the stationary measure of a birth and death
process with birth rate A and death rate g;, =1, 2 (Walrand(1983)).

The event rate of the (A, 1, #9)-network is A+ u i+ u, Without loss of generality we
assume that A+ u,+ 9 =1 (otherwise, we can rescale time). If we regard G as the
discrete generator of a Markov chain Won S, then the (A, g, #;)-network is precisely

the uniformization of this chain. Consequently 7 is also the stationary distribution of W We
assume that the kernel K is associated with the Markov chain W with the stationary
distribution 7.

let E denote the set of the realizations of W that reach the region
F:={}=(x1,x2)ES| x1+x, =N} before hitting the state B=0(0, 0). We are interested
in estimating, for large N, the probability @ := P4{E}; the probability that W reaches F

before returning to the state _(3 given that W starts from the state _6 Here we can find «
by the first step method. For this let Hx,,x5) for 0<x,, x5 <N denote the probability
that W hits F before returning to the state [i given that it starts from the state (x, x3).
Clearly, P(0,0)=0, P(x;,N—x;)=1 for 0<x,<N, and F(1,0) = e The first step

equations give
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(A+pu)P(x,0) = AP(x,+1,0+ 4, Px;—1,1), 1<x,<N-1

(A+u)P0,x2) = AP, x)+p2P0,x,—1), 1<x3<N-1
(2)
P(xy,x9) = AP(x 1+ 1, x9)+u  Px,—1, 2+ D+ u, Px,, x,—1),

1<x,<N—-1, 1<xy3<N—x,—1.

However the above equations (2) may not be solved analytically because the order of the
characteristic equation becomes large. Therefore the simulation is often recommended to
estimate the probability «. For this stable network, the events of reaching the large total
backlog are very infrequent. Hence direct Monte Carlo simulations are very slow and take up
a lot of computing time. Besides, there is also the difficulty of implementing a pseudo-random
generator that can function effectively during very long simulations (Schwartz and
Weiss(1993), Heidelberger(1995)).

In this paper, we first perform the A-transform proposed by McDonald(1999) to find a
harmonic function and its associated twisted network which represent the most likely overload
behaviour of the original network. Those, then, make us to be able to obtain the estimator of
the probability @ for the fast simulation because the event corresponding to the excessive
backlog for the twisted network has high probability., This twisted network is identical to the
network which is derived by an exponential change of measure for importance-sampling
estimator in Parekh and Walrand(1989) and Frater et al.(1991). They used the heuristic
arguments associated with large deviation principles in Varadhan(1984) to find the change of
measure while we present the analytic method which gives the twisted network. In addition,
our method can be applied to the case that both nodes have even the same load.

In section 2, we introduce the A-transform method of McDonald(1999) for general queueing
networks. We use it to find twisted networks for one node’s overload for tandem network in
subsection 2.1. In subsection 2.2, we extend the original tandem network by adding a fictitious
node which records each arrival and departure of the network. Then we perform the #
-transform to obtain the harmonic functions for the total backlog’s overload. We notice that
these harmonic functions and associated twisted networks are identical with those obtained in
subsection 2.1. Section 3 shows how to use the twisted networks and the harmonic functions

derived in section 2 in the fast simulation that estimates the probability a.

2. The hA-transform method

We consider a stable queueing network with »+m nodes, which may be represented by a
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Markov jump process having a generator G in the positive orthant S=N """ We also
assume, without loss of generality, that the event rate of this jump process is 1. If we regard
G as the discrete generator of a Markov chain Won S, then the network is precisely the
uniformization of this chain. We observe overload behaviour of other nodes when a chosen
node becomes overloaded; that is when one coordinate of the chain W on which we relabel
the first coordinate, exceeds a given level. When this node is overloaded, other nodes may
remain stable even though they are subject to higher loads. The coordinates corresponding to

these super stable nodes are renumbered to #+1 through r+m. Unfortunately when the
chosen node is overloaded it may drive other nodes into overload. We assume these nodes

correspond to coordinates 2 through 7 That is, for _9;=(x1, X0 Xy X g1 X pi )y X1
denotes the queue size of the chosen overloaded node; x,,*, ¥, are those of nodes which

change to be unstable; %,.;,***, X y+m are those of nodes which remain stable. We look for a

harmonic function #(x) which transforms the original network into the twisted network. In

the twisted network, nodes 1 through # become transient while others remain recurrent.

If B={i,,175,, 14, we say % is on the boundary Spif x,=0 for i€f but x;>0 for
i€ . Denote the interior of the orthant by int( S) if x,>0 for all 7z To find 2 we remove
the boundary A :=U }_;Sy for the first # coordinates. Define S®=2Z" x N™, where Z
denote the integers. If B<S{r+1,,r+m} and x;=0 for i€f but x;>0 for
ic{r+1,.., r+m}\ B, then }ES‘;.

Define int (S®) : = {x€S% : x,50, i=7r+1,"+, r+m}. We decompose x< S as

= %, %) where ¥eN', xeN™
On S® we assume that transitions for a chain W™ are given by a probability transition
kernel K~ of the form
K<z, 0N=K" (% Ne(3— % %5,

where KT(7%, 73) is a transition kernel from N™ to N™ and g(- | %, 3) is a probability
mass function given each pair (%, 3. We also assume that the probability transition kernel
K(—;:, —;7) of W agrees with K w(}, _37) when x€ S\ A, Consequently the chain W behaves
like W outside the boundary A.

McDonald(1999) shows that in great generality one can construct the function

Wx) i=alasairn for x€ S® such that 4 is harmonic for the kernel K, that is,
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W)= 2 K“(33)h(), ®)
where a:=(a,,"**,a,., is a vector of positive constants such that ¢,=:=a,=1. We

assume the existence of % such that G4, defined below is a discrete generator. For a
bounded function f on S,

GEfR) = 7}‘5 G=(h- N2

= ZUG)-ARHB k=),
ye x)

where G~ is the generator of the chain W”. We call G, the generator of the twisted

chain Wi,. We also denote the kernel by K §,. Hence
K3 9 =22 k=33, (4)
h(x)

Of course, the solution # of the equation (3) must produce the twisted chain
Wee=( Wae  Wu ) such that Wy,  drifts to plus infinity while Wy, ~ must be a

stable Markov chain. If this fails, then we must try again by twisting another set of
coordinates; that is, we must redefine the super stable nodes.

Define
q(x) : = ;SKGE,}) h(3)/ h(x) for xS )

and define K (%, 3 = K, ) (h(3)/h(%)a(x) ' for %,y S. Then the twisted chain
Wi with the kernel K ., has the same state space S as the original chain W does. Notice

that the kernel K ., agrees with the kernel K%, except on the boundary A.

2.1 The A—transform for one node’s overload in tandem network

(i) For the case of p;> 0,
If the load of node 1 is larger than that of node 2, then node 1 becomes overloaded first.

Take A={_;;=(x1,x2)ES;x1=O} and S®=2Z XN. To calculate constants a@; and a
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2

for the harmonic function A(x)=a }'a 3°, we derive one constraint in the interior, int (S*),

from the equation (3);
/Ial-l-pla 1_102+/12a 2_1=1

The constraint on Sy is

/ia1+/11a f1d2=/1+/11.

Subtracting the later constraint from the first yields u¢j,a 5 1= 4 5. Consequently a;=1.

Substituting it into the first constraint gives a,= u;/A=1/p;. Therefore the harmonic
function is A(x)=p ; *'. The twisted kernel K, based on the equation (4), is given by

K% Gy, ), (1 + 1 xg) =2ELID oo ), (a4 1,20)

u
=2 A

KTW((xl,X2),(x1—1’x2+1)) — h(xl_l,x2+l)

K=((x1,x2),(x1—1,x,+1))

h(xlvxZ)

_a,

=y T4
K5(Grre.Geree=1) =2 gy ) (21, 20- 1)

=1-uy=u,

for (x,%5)€int(S¥). On ST we have

K(51,00, (5, +1,0) =2
A

Ko((x1,0), (51 =1,1) =

On the other hand, it follows from the equation (5) that

1 for xS\ A
- + - -
q(x) = —l:l-l_iszz for xe A\{0}
#i >_7
2 for x= 0.

Thus the twisted kernel K ., is given by, for xS\ A
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K tW(}’ ;) = Kotow(;, _.;’)y

and for x50

__ My
K o((0,2),(0,x,— 1)) =—52—,
H1t s

and K .,((0,0),(1,0)=1

Hence the twisted chain Wy, with the kermel K, corresponds to the (ui,A, #¢3)
-network, which is obtained by interchanging the arrival rate A and the service rate p; of
node 1 for the original (A, #;, #4)-network. Notice that node 1 of the (u,, A, #,)-network
has the load u;/A=1/p,, larger than 1, which implies that this node is overloaded. On the

other hand, node 2 remains stable since its load z,/u, is smaller than 1.

(ii) For the case of p{ 0,
In this case, we consider A ={x=(x},%3)€S;x,=0} and S®=NxZ. As described
earlier the constraint in the interior, int( S°), for the harmonic function A(x)=a }'a 3’ is
Aai+puiaitaytusaz;t=1
and the constraint on S is

Aay+ppa gt =24 p,.

The solutions of the above equations are @, =ay = #£9/A=1/p4 and the harmonic function

is h(x)=0, 7% Pherefore the kernel K w is given by, for (x;,x7) = int( S)

K (21, 22),(x1+1,22) = p,
K o((x1.22).(x1— 1,22t 1)) = ;4
K w((x1,29),(x1,2,—1)) =4

on Sy
K w((0,22),(Lx2) =i
K wl(0,22),0,2,=1) =,

on S 3
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- M2
——H1
Ktw((xl,o),(xl_l,l)) - #1+ﬂ2,

and K ,((0,0),(1,0))=1. We notice that the (g4, g, A)-network corresponding to this
twisted chain W, has overloaded node 2 and stable node 1.

(iii) For the case of p,=p,

If ©1=p09 then both nodes become overloaded simultaneously. So take

A={_J’c=(x1,x2)ES;x1=O or x;=0} and S®=2Z xZ. Then we can derive one

constraint for the harmonic function A(x)= a* " in the interior, int( S%°), such that
Aa+u,+p,a t=1,
which implies that A(x) =0, (ritrd 09 142 pecall from the above case (ii) that the

(¢q, 1, A)-network is obtained as the twisted network by using the harmonic function

h(})=p 9 (ot a) But, in this case, both nodes are overloaded because both loads are larger

than or equal to 1.
2.2 The »Ai-transform for the total backlog’s overload in tandem network

We consider the behaviour of the queues at both nodes when the total backlog becomes

overloaded. To make the total backlog overloaded we add a fictitious node to the network

+

which records each arrival and departure of the network. Let ¥ = (x1+x2,§) and

Y i=(y,+4 ) where x=(x1,%9), ¥y=(¥1,¥2)E€S. Then * W with the state vector

+; on +_§ denotes an augmented chain where the first coordinate of ~ W tracks the
number of customers at both nodes. Then the kernel of ~ W is given by
TEO(Tx, Ty = xxita,=Txy, v tye= Ty} K5 (x, ),

where x{A} denotes the indicator of an event A.

(i) For the case of p,>p,
The twist constants are defined as

a:=(p1'1,09).

Then the harmonic function A( +;) is given by
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h(+x) =0 1—(xx+xz)1xlp Jlfz
)

= 0

So the (x, A, #4)—network is obtained as the twisted network in subsection 2.1.

Notice that the twisted kernel “KG of + Wh, is given by

a(y
(" x)
Xi— W

= x{x1+x,= "2, v +y= Ty KT (W o ]

TKLCTx ) = a{xitxe=Tx, vt ye= Ty ) KT(x, 9)

By construction "K Yo 1s the kernel on *S® obtained by deleting the boundaries for the

first two coordinates of "W which are transient. Hence when the total backlog is
overloaded, node 1 is also overloaded but node 2 with the smaller load remains stable in the

(g1, A, ug)-network.

(ii) For the case of p<p,
The twist constants are defined as
a:=(p;'1,01).
Then the harmonic function is A ¥ =p, @1¥) and the twisted network is the
(¢4, ¢, A)-network. In this twisted network, when the total backlog becomes overloaded

node 1 remains stable but node 2 is subject to overload.

(iii) For the case of p,=p,

In this case, if the total backlog becomes overloaded, then both nodes may be overloaded.
So letting the twisted constants

a :=(p1=p2’111)

—(xitx) _ 0 z*(xﬁ'xz)

-
we have the harmonic function A( "x) = o , which is the same as one

for the case p1< o, Of course, the same twisted network is obtained.

3. Fast simulation for the excessive backlog

We define a cycle as the duration starting from the state 6 and ending at the instant the
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chain W for the first time, returns to the state 6 Let £ be the sample space for the cycle

trajectories. The elements of 2 can take the one of two forms. If W never reaches the

region F during the cycle given by we 2, then @ is of the form {_)cug, _ajl,-", wq}
where 750=_0>, “0,=0,0), @y=(wy wy) for k=1, and ¢ is the time to return to the

state _(5 If W reaches the region F during the cycle, then @ 1is of the form

—  — — > —

{ wo, w1,*, @y, Wps1,", @,} where p is the smallest integer such that
w1yt wg =N, Note that the former form is simply a special case of the latter form, so we

will only consider cycles of the latter.
Let us define
Vi : = x{ Wreaches F in the kth cycle).

Notice that V,'s are i. i. d. random variables having @= E{ V',]. For the direct Monte Carlo

simulation,

Vit Vot +V,
n

a, 1=

is an unbiased and convergent estimator of @ for » simulated cycles.

To obtain another estimator of @ for the fast simulation, we consider two cycles, namely

an original cycle and a twisted cycle, both starting from the state 6 and moving to the state
(1,0) with probability 1. The original (twisted) cycle uses the original (twisted) transition

kernel K (K ,) from the state (1,0) to the region F, and then returns to the state i by

using the original transition kernel K. Then the original cycle generated by the original kernel
K has the probability function

Uo) = a0 LK@y, @0 I Ko 30,

=p

where K( _)a)o, 701) =1]. If the cycle is generated as the twisted cycle, then similarly it has
the probability function

vl = a0 LKW Do, B0 I, K(Gur. 20,

Notice that K=K and K5 =K, on S\A. If o, A\{0} and @1 €S, then

we have that
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K“Cop @r) = AK( @y, @i1) o
Kol @p @rr1) = BEK p( @p @py),
where
A:{ Atu, for p 20, and w, =0
Atp, for 0;<p, and wy =10
and

B=[#1tuy for o )Fpo; or wy=10
At+uy, for p;=p, and w,=0.
Let N, (@) be the number of ke{l1,2,,p} such that w,EA. From (6) and

K3 @y, @) =K% @4 @) @ps1)/ M @), the probability function @) can

be rewritten as

U w) =(—§—) (@) LIIKLW( Gpo1, @)
:(ﬁ)”‘” 1w wy)

N (@)

W w4-1) o
o a)k)1 k:—IiLlK( We1, @)

w(a) QIKW( Wh1, @) kQHK(?’uWI, o) ™

A h( (l)p)
= L(w) v (@),
where
N, (w) -
_( B\ M @)
Lo =) W)
+ N, (o)
H @1p
(ﬁ 01 : for 120
N pitps )
(—,1—1;71—2-) o3 1 for p,<p,,

where A ;={xeS|x,=0}, i=1,2.

Denoting W(w) : = x{ Wreaches F in the cycle @ } and using (7), we get

a = (EQV(w)u(w)
= 2 Vo) (@) (),
Let

UV, := x{W,. reaches F in the kth cycle}

x{(¢1, A, #2)—network reaches F in the kth cycle} for o1 o,
2{Cus, ¢y, A) —network reaches F in the kth cycle} for o, < p,

and
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MA
U+ u "N
’ LR 5 for )0,
) At py
éf.k-z N

pites\ T oo
(“/1"“+"#1 ) 02 for 01<0,,

where N, denotes the queue size of node 1 when U ,=1, N’kAl denotes the number of visits
to the boundary A, during the kth cycle for (u;, A, p,)-network, and Nt », denotes the

number of visits to the boundary A, during the kth cycle for (g4, g, A)-network,

respectively. Then for # simulated twisted cycles

a* . U1£1+U2£2++U n£ n
n o 7

is an unbiased and consistent estimator of the probability @ for the fast simulation.

Table 1 shows the results of some experiments. In Table 2, there are the empirical means,
standard deviations and coefficients of variation of the estimates obtained by the twisted
network for the same examples as in Table 1. The first step equations were solved by using
the IMSL routine, LEQT2F(Parekh and Walrand(1989)). Notice that the convergence under the
fast simulation seems to be more rapid than that under the direct simulation.

Table 1. Simulations for tandem networks

Method H Direct Simulation n Fast Simulation
Example 1
0.05, 0.1, 0.85)~network N=15
a=3.459x10 ~°
n 10000 20000 100 500
a.lay) 0.0 0.0 3.7122x10 ~%| 3.418x10 ~°
Example 1
(0.1, 0.5, 0.4)-network N=13
a=2.104x10 7’
n 20000 30000 700 1000
aay) 0.0 0.0 2.3998x10 "7 | 1.99%6x10 7
Example M
(0.2, 0.4, 0.4)-network N=20
a=1.812x10 °
n 10000 20000 100 500
alay) 0.0 0.0 1.464x10 7% | 1.781x10 ~°
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Table 2. Empirical standard deviations for tandem networks

Example 1
(0.05, 0.1, 0.85)-network  N=15

a=3.459x10 ~° # of experiments=20

n 100 500
Empirical Mean 3.818x10° 3.487x10 °
Empirical Std. Dev. 5.428x10 7 2.081 %10
C.V. x100% 1.383 0.5968
Example I

(0.1, 05, 0.4)-network  N=13
a=2.104x10 7’ # of experiments=20

n 700 1000
Empirical Mean 2.431x10 "’ 2.007x1077
Empirical Std. Dev. 3.423x10 8 1.146x10 8
C.V. x 100% 14.081 5.710
Example I

(0.2, 0.4, 0.4)-network  N=20
a=1.812x10 75 # of experiments=20

n 100 500
Empirical Mean 1.574x10 5 1.769x10°
Empirical Std. Dev. 2.645%x10 8 6.998 x10 7
C.V. x 100% 16.804 3.956
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