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A Procedure for Fitting Nonadditive Models!)
Han Son Seo?

Abstract

Many graphical methods have been suggested for obtaining an impression of a
curvature in regression problem in which some covariates enter nonlinearly. However
when true model does not belong to the class of additive models, graphical methods
may contain a serious bias. A method is suggested which can avoid such bias in the
fitting of nonaddive models.
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1. Introduction

Standard linear regression is based on some assumptions such as consistency of variance
and linearity of the regression function. Linear relationship between explanatory variables and
response variable, however, is not so sure in many problems, Thus the following model is
considered:

Y=8y+BIX,+a(X;)+e (1.1)
where Y is the response, X; is p;X1 vector of covariates =1, 2 and g is unknown

function with E(e| x,x,)=0. For the specification of the curvature g in the model (1.1),

many graphical methods are suggested including added variable plot(Chamber et al., 1983,
p.272), partial residual plot (Larsen and McLeary, 1972; Weisberg, 1985), augmented partial
residual plot (Mallows, 1986) and CERES plot (Cook 1993). Berk and Booth (1995) compared
nine plots including these plots concerning with the ability to reveal a curve.

Partial residual plot is described as plot of e+ QJXZ versus X, where @ and e are the
LSE and the OLS residual respectively from linear regression model. This plot should work

well if the conditional expectations E(X;| X,) are all linear. Augmented partial residual plot

is a plot of e+ ¢, X,+ $» X2 versus X, from the quadratic regression model
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Y=pp+ X101+ $:Xo+ ¢ X5+ €.

Augmented partial residual plot can depict g better than partial residual plot if
1 X+ ¢2X§ provides a better approximation of g(X;) that provided by ¢X, alone. CERES
plots include partial residual plots and augmented partial residual plots as special cases.
CERES plots are useful for obtaining the visualization of g when the conditional expectations

E(X, | X;) are neither linear nor quadratic. All these plots were developed under the

assumption that X; enters the model linearly. Failure occurs when the model (1.1) is

misspecified, when the true model is

Y= Bo+f(X1,X2)+€ (12)
where f is an unknown function. If f(X,,X,) belongs to the class of generalized additive

models (Hastie and Tibshirani, 1990 P86) then backfitting algorithm can be used to fit it.
In this article a method for fitting the model of (1.2) is proposed. We suggest to transform
a response variable and to use CERES plot for the visualizing the curvature. We assume that

p;=1 for the simplicity of the problem. Section 2 discusses CERES plots and inverse

response plot. Section 3 proposes a new procedure for fitting nonadditive models and applies it
to the real and the artificial data. In Section 4 concluding remarks are given.

2. CERES plots and inverse response plot
2.1 Visualizing the curvature via CERES plots

Two dimensional plot is denoted as { 2, v} with the understanding that 4 is assigned to the
horizontal axis and v is assigned to the vertical axis. We assume model (1.1) and are
interested in uncovering the curvature in the regression. Consider the model

Y=ay+al X+ b"m(X,) + ervor (2.1)

where m(X,)=E(X,|X,), and construct a plot { Xy, e+ BTm(Xy)) i=1,-,n.
E(X,| X;) can be obtained parametrically by setting E(X| | X3) =BTh(X,) where B is a
matrix of unknown coefficients and A(X5,) is a user-specified vector-valued function of Xj.

Alternatively E(X,; | X3) could be estimated by using nonparametric regression. Coefficient

estimates are obtained by minimizing a convex objective function :

(ay, @y, b) = arg min L,(aq, a;, b) (2.2)
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where L,(ay, a;,b) = % 1=1L(y,~—a0—- afx;—bTE(X, | X5)) and L is a convex objective

function. Based on the model (2.1) and estimates in (2.2), the estimate &, converges almost
surely to @, and consequently e;+ b7 m(Xy;) converges to conmstant + g(X,;) +¢,;. The plot

{X,, e+ b7 E(X,1X,) } is referred to as CERES plot, an abbreviated acronym for
"Combining Conditional Expectations and RESiduals”. If E(X, | X,) is linear in X, CERES
plots are partial residual plots and if E(X, | X;) is quadratic in X, then CERES plot are
same as an augmented partial residual plots. When the conditional expectations E(X LX)
are all linear, partial residual plot would be enough to examine the curvature in regression
problem. But if E(X, | X;) is nonlinear, augmented partial residual plots and CERES plots

should be considered and CERES plots enhance the resolution of a week trend of curvature in
an augmented partial residual plot.

CERES plot was developed under the assumption that X 1 enters the model linearly. If this

assumption is not satisfied CERES plot for X, may contain a notable bias, This kind of bias
was mentioned as leakage effect by Chamber et al. (1983, p.306). To see how the leakage

effect comes about, consider a CERES plot for X, based on OLS estimation in a situation in

which  X; may contribute nonlinearly,

y=a+ g(x;)+ gy(xy) + error (2.3)
where E(g;)=0, E(X,;)=0, and the errors are #d. It is shown that a CERES plot for X
which is constructed from (2.1) will display g; as indicated previously only if X, and X,
are independent or if g)(x,) is linear in x;. Thus if g(x;) is nonlinear and X, and X,
are sufficiently dependent then the effect of g, may cause a notable bias in the CERES plot
for X5, even if g, is linear. So when the model of (1.2) is assumed CERES plot is not an
appropriate tool for uncovering the curvature of X,. Cook(1993) suggested that higher order
terms and transformations could be incorporated in x;. We consider using inverse response

plot for transforming response variable v in an effort to satisfy the assumption of linearity.
2.2 Response transformation using Inverse Response Plot

Assume that there is an monotonic function ¢ such that

t(y)=By+ BTX+ error (2.4)
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and consider the problem finding a response transformation #(y). If A8 were known the plot
{y, #8Tx)} will provide a visualization of an appropriate transformation. According to the

different value of k, the transformations displayed may not be same, but they are related
linearly and are all satisfy (2.4). Cook and Weisberg (1994) suggested an inverse response plot

taking the following approach. Since exact value of kfis not so sure in most cases maximum
likelihood-type regression based on a linear model y= ao+aTx+e is considered as a
practically useful estimators of A8. The maximum likelihood estimate of (ay, @) is obtained
similarly to (2.2) by minimizing an objective function n P20 L(ay+a’x; ,v;), where
L(m,y) is convex in m for each y. Ordinary least squares is an example of possible
estimation method. Following Li & Duan (1989), @ is a consistent estimator of kB8 if
E(x| 8Tx) is linear in B7x. This condition hold for all A if and only if x has an
elliptically contoured distribution (Eaton, 1986). Since we can get a consistent estimate of kB

using Li & Duan’'s results, we now assume that £ is known in the argument of population

case.
We consider the plot {y ,8 Tx) for obtaining a good impression of an appropriate
transformation. The plot {y ,87x} is useful when, at least approximately, E( 8T x| v)=t(»).

Since #(y) is assumed to be monotonic the following holds :

E(B™x1y) =E(B x| t(y))
=t(y)—E(e| B +e) (25)

Thus to satisfy the condition E(BTx|y)=t(y), it requires that E(e | BTx+€) should be

linear in #(y). This condition will hold if ( BTx ,e) follows an elliptically contoured
distribution (Cambanis, Huang and Simons, 1981).
To measure the degree of linearity, the population correlation coefficient between

E(B™x| t(y)) and t(y)

o= COU[E(BTx l t(y)). t(y)] (2 6)
Var(E(BTx | t(y))"? Var(t(y)* '

can be used. Once #(y) is estimated from the inverse plot applicability of the method can be

checked by calculating a sample correlation between #(y) and an estimate of E (B™x 1 v)

which is obtained by smoothing the plot { #(¥) , ET x )

3. Transfomation and visualization in the fitting of nonadditive models
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3.1 Linear approximation

We now consider a method for fitting the nonadditive model of (1.2). We assume that there is
a strictly monotonic transformation of the response, with which nonadditive model (1.2) can be
expressed as one of generalized additive models. In other words we assume that there is a

strictly monotonic function ¢ for some % which satisfies the following relation
t(y)=a+Blx,+ hixy) + ¢ (3.1

and that & is sufficiently smooth for a simple linear approximation to % to work well locally.
Once an appropriate transformation ¢ is found, the curvature % can be fitted by one of
known methods. We suggest to use an inverse response plot for visualizing # and to use a
CERES plot for 4.

To use the inverse response plot for finding transformation ¢, model (3.1) should be
expressed linearly. For a linear representation of #4, locally linear approximation method is

used (Johnson and McCulloch, 1987). We first partition observations by their x, value. A set

of » observations is partitioned into subsets so that within each subset the values of the

variable x; do not vary much relative to the overall variation in x,. Within each subset of

our partitioning scheme we will assume that % is linear and the slope and intercept will be
allowed to vary among subsets. Once the partition is chosen we then have the following
model

t(y,,-)=BlTx,-,-+ d,'+ bi(XZ,'j"“-x__zi)+E,y Z.=1,"‘,k j=1,---,n,- (32)

where y; is the value of ; th response variable in the 7 th subset, #; is the number of
observations in the ¢ th subset and % is the number of subsets. At (3.2) we have used the
approximation A(xq;) = a; + b; (x5 — %5 ) where %5 is the mean to the x5 values of the
observations in the ¢ th subset. Using one subscript for each variable, x, and ;2—1 denote
the m th value of x; variable and mean of x, values of the observations in the / th subset
respectively. Two #n by & matrices D, and Z, are defined such that value of (m , /)th

element of D, and Z, is, respectively, 1 and (g, — %y ) if Xymbelongs to [ th subset, or

zero otherwise. Taking locally linear approximation model (3.1) is written as

t(y)=a+ Blxy+ Dya+ Zb+ ¢. (3.3)
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Now a response transformation #(y) can be estimated by using inverse response plot with
covariates x;,a and b in (3.3). And with the transformed response variable #(y) CERES

plot for x, is used for uncovering %(x;).
3.2 Examples

Two examples are proposed and the related programs are coded by using Xlisp-stat (Tierney,
1990).

Example 1. (Artificial data) For the example, 20 observations were generated according to the
model

y=(5+3% +1/4)?%,
where x,=1/x,+N(0,1), x,=0.3%;+0.2u,, %; and %, are uniform random variables on

the interval (1, 3) and (1, 8) respectively. Following the notations in model (3.1), we have

#Hy)=Vy, h(x,)=1/x%. Table 1 contains the data and a partitioning scheme.

Table 1. The data and Partition Scheme for Example 1.

case v x1 X2 _ partition| case y x1 x2  partition
1 131 1.29 0.619 1 11 89.2 1.25 1.19 3
2 264 2.95 0.647 1 12 108 1.57 1.2 3
3 162 1.86 0.68 1 13 916 1.31 1.25 3
4 122 1.44 0.767 1 14 96.8 141 1.29 3
5 478 0.111 0.795 1 15 87.3 1.28 1.43 4
6 43.8 0.0814 0.8%4 1 16 90.3 1.37 1.6 4
7 78.5 0.856 0.881 1 17 123 1.9 1.61 4
8 85.8 1.011 0.902 2 18 75.4 1.13 1.82 5
9 91.6 1.17 0.968 2 19 75.6 1.14 1.86 5
10 989 1.33 1.03 2 20 134 2.1 1.96 5

Conditional expectations E(x,|x;) are estimated by using LOESS curves. Figure 1 (A)
shows the inverse response plot with the given partitioning scheme. The superimposed line on
the figure 1 is obtained from the ordinary least squares regression of v on \/}z The curve
indicate that \/} transformation with corr(fz,\/}) being 0.99, is a strong candidate for
achieving linearity in (3.1). Corr( E(B7 | Vy),Vy), the measurement of linearity between

E(BTx| #(y)) and #(y), is 098, which is big enough to guarantee the applicability of the
inverse response plot to this data. With different partitioning schemes we have similar plots.
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Figure 1 (B) is CERES plot for x, after transforming response variable into \/}) The

superimposed line is g—E.
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Figure 1. (A) Inverse response plot of { y .y} for the example 1.
The line on the plot is obtained from the ordinary least
squares regression of y on \/;1

(B) CERES plot for x, of Example 1 with transformed

response\/}. The superimposed line is g——g where

g= (l/xz)z-

When the model of (1.1) is assumed, constructing a variety of CERES plots seems common
way to defect curvature. But deciding which variables correspond to x; is not straightforward
(Cook 1993). We propose an example impling that the new method is helpful to decide which
variable corresponds to x,.

Example 2. (Real data) The ozone pollution data given by L. Brieman (1985) were discussed
by many authors (Fried man and Silverman, 1989; Hastie and Tibshirani 1990, p.294). The
data consist of atmospheric ozone concentration (Y) from eight daily meteorological
measurements (X) made in the Los Angeles basin for 330 days in 1976. For each covariate
we decide the appropriate transformation of response variable for (3.1) from an inverse

response plot. IBTP with response transformation of yo'7 is decided as x,, with the highest

value of corr(y ,#(3))=0.78 and corr(E(B7x| t(v)) ,#(¥))=0.99, among eight variables
for a variety partitioning schemes. Figure 2 shows the inverse response plot and regression
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line of y on y0'7. This implies that with the transformed response variable and IBTP as x;,

linearity of the model as in (3.1) is well guaranteed. Figure 3 (A) is CERES plot for IBTP
and Figure 3 (B) is CERES plot for IBTP with the transformed response variable by y0'7.

The apparent systematic effect of IBTP has been reduced.
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Figure 2. Inverse response plot of { y .y} for the ozone pollution data.

The line on the plot is obtained from the ordinary least squares regression of y on y°'7.
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Figure 3. CERES plots for IBTP with (A) y and (B) "7

4. Remarks

Methodology suggested in this article consists of two procedures, partitioning data for
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transforming response variable and using CERES plots. Partitioning scheme does effect on
only the decision of response transformation. It is difficult to determine the optimal choice of
partition schemes analytically to balance all factors. However, since there is no difficulty
trying various partition schemes, if the outcome is insensitive to changes in partition scheme,
then we are reassured. Usefulness of CERES plot depends on how much the estimation of

E(x; | x9) is accurate.
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