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On the strong law of large numbers forv
pairwise negative quadrant dependent
random variables

T. S. Kim?2), J. I. Baek® and H. Y. Seo%

Abstract

Petrov(1996) examined the connection between general moment conditions and the
applicability of the strong law of large numbers to a sequence of pairwise independent
and identically distributed random variables. In this note, we generalize Theorem 1 of
Petrov(1996) and also show that this still holds under assumption of pairwise negative
quadrant dependence(NQD),

1. Introduction

On the strong law of large numbers(SLLN) for a sequence of independent and identically
distributed random variables there exist Kolmogorov's theorem and the
Marcinkiewicz-Zygmund theorem(see e.g. Loéve, 1963 or Stout, 1974). In what follows, we put

S, = 2)( ;» According to Kolmogorov's theorem, there exists a constant & such that
=

Sa/n — b almost surely if and only if E|Xj|< 0. Here if E|X | {0, then b=EX,. By
the Marcinkiewicz-Zygmund's theorem for 0< <2 (S,—n&)/n"? =0 almost surely if and
only if E|X|’<c and EX,=5

Etemadi(1981) proved that Kolmogorov's theorem remains true if we replace the independence
condition by the weaker condition of pairwise independence of random variables X, Xy, **

and under the assumption that {X,, =1} is a sequence of pairwise independent and

identically distributed random variables Martikainen(1995) showed that for 1< #<2 the
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condition E|X|"log *|X[)"¢ o (for some positive r>4r—6) is sufficient for the SLLN
(S,—ES,)/ n'” =0 a.s. However, it is not known that Marcinkiewicz-Zygmund’'s SLLN
holds for pairwise independent and identically distributed random variables.

Two random variables X and Y are negative quadrant dependent(NQD) if, for all x, ve R,
PlIXox, YOyl<P[X>x]PIY>yl(or PIX<x, Y<y]<P[X< x]P[Y<y]) and positive
quadrant dependent(PQD) if P[X>x, Y>y] 2 P[X>x]P[Y) >y J(or P[X<x, Y<y] 2
Pl X<x]P[Y=<y]) for all x,y=R. These concepts of quadrant dependence were

introduced by Lehman(1966).
Matula(1992) proved that Kolmogorov's theorem still holds under the condition of pairwise

negative quadrant dependence of random variables X;, X, ---, that is, let {X,, =1} be a

sequence of pairwise NQD random variables with the same distribution function F(x) then
S./n — a almost surely, for some constant @ € R, if and only if E|X;] <o, If E|X,| <o,

then a=FEX, .

Recently, Petrov(1996) examined the connection between general morment conditions and the
applicability of the strong law of large numbers of identically distributed random variables.
The following theorem is Theorem 1 of Petrov(1996).

Let f(x) be an even continuous function that is positive and strictly increasing in the

region x>0 and satisfying the condition f(x)—co as x—oo. We put a, = 7Y n) where

£ ! is the inverse of f we have a,1 .

Theorem 1. (Petrov, 1996) Let {X,,n=1} be a sequence of pairwise independent
identically distributed random variables. If S,/ a,— 0 a.s. then Ef(X;) { .

In this note we generalize Theorem 1 and show that this remains true if we replace the
pairwise independence condition by the condition of pairwise negative quadrant dependence.

2. Results

Lemma 2.1. Let X be a random variable and let {b,,#=1} be a sequence of numbers
satisfying 0< b, T . Let ¢ be any even function that is positive and strictly increasing in
the region x>0 and satisfying the condition that there are some constants ¢; >0 and ¢;> 0

such that

< Co. (21)
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Then E¢(X) < o if and only if
722‘ P(|X]> b,) <oo. (2.2)

Proof. Let b;=0. Assume E¢(X)< oo, From (2.1) and the assumption that ¢(X) is

increasing function we have

E$(X) = 2L EL$(X (b, 1< |XI<b,)]
> 33 6(b,m)) P(b, 1< 1X1<5,)
>0 23 (= DP(b, < IXI<b,)  (by (2.1)
— ¢ 23 nP(b,< 1X| < bya)) = o 23 PUXI> b,).

Thus (2.2) holds. Assume that (2.2) holds. By the conditions as the above we have

B§(X) < 2, #(5,)P(b, < |XI<b,)

éqnz‘nf’( bp—1< 1 X1<0,)  (by (2.1)
<e {1+ nZlP(IXI> b,)}< oo,
Thus the proof is complete.

Remark, By putting ¢; = ¢; =1, Lemma 2.1 becomes Lemma 3.3.2 in Stout (1974). In other

words, Lemma 2.1 is a generalization of Lemma 3.3.2 of Stout (1974).

Theorem 2.2. Let {X,,n=1} be a sequence of pairwise independent identically distributed
random variables and let {b,,#=1} be a sequence of numbers satisfying 0< b, T . Let
¢ be any even function that is positive and strictly increasing in the region x>0 and
satisfying (2.1). If

S,/ b,—0a.s. 2.3)
then

E¢(X )< 0. (2.4)
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Proof. According to Lemma 1 in Petrov (1996) it follows from (2.3) that
;P(lxllzbn)m (2.5)

since X;'s are identically distributed. Thus, from (2.5), (2.4) follows by Lemma 2.1.

Corollary 2.3. let {X,,n=1} be a sequence of pairwise independent identically distributed
random variables and {b,, =1} a sequence of positive numbers such that 0< b, 1 . Let
¢ be any even function that is positive and strictly increasing on [0, o) and satisfying
(2.1). If

2 (1/6:) = 0(n/by,), (26)

then (2.4) implies (2.3).

Proof. First note that by Lemma 2.1 it follows from (2.4) that Zl P(| Xl =b,)<co. Thus

the desired result (2.3) follows by Lemma 2 in Petrov (1996).

Remarks. (1). It follows from Theorem 2.2 and Corollary 2.3 that if {X,,#=>1} is a

sequence of pairwise independent identically distributed random variables and if (2.6) is
satisfied then (2.3) and (2.4) are equivalent.

(2). By putting ¢;=c¢;=1 in (21) b,=¢ (#n) and thus ¢ and b, satisfy the

conditions in Petrov(1996). Eventually, Theorem 2.2 is a genealization of Theorem 1 in
Petrov(1996).

Lemma 2.4. (Matula, 1992) Let {X,,#>1} be a sequencc of pairwise NQD random
variables with the common distribution F(x) and {5,,#>1} a sequence of positive
numbers such that 0< 4,1 . If S,/b,—0a.s. then (2.5) holds.

Finally we show that Theorem 2.2 remains true if we replace independence condition by the
weaker condition of negative quadrant dependence of random variables X, X, ---, that is,

using Lemmas 2.1 and 2.4 we extend Theorem 2.2 to the pairwise NQD case;

Theorem 2.5 Let {X,, #=1} be a sequence of pairwise NQD random variables with the

same distribution F(x) and {b,, n=1} a sequence of positive numbers satisfying

0<b,1 . Let ¢ be any even strictly increasing function on [0, ) satisfying (2.1). If
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(2.3) is satisfied then (2.4) holds.

Proof. According to Lemma 24 (Lemma 3 in Matula (1992)) we have §1P[ (X 1=20,]< 0.

Thus the desired result follows by Lemma 2.1.

By using Lemma 2 of Petrov(1996) we also have the following result.

Corollary 2.6. Let {X,,n=1} be a sequence of pairwise NQD random variables with the
same distribution F(x). Let {b,,#=>1} be a sequence of positive numbers such that
0<b,1 . Let ¢ be any even function that is positive and strictly increasing on [0, o©)

and satis{ying (2.1). If (2.6) is satisfied then (2.3) and (2.4) are equivalent.

Corollary 2.7. Let {X,,n=1} be a sequence of pairwise NQD random variables with the

same distribution F(x) and let b,=g (n) for all »=1. Assume
(i) x2*/g(x) 1 © as x— co,

(1) ¢, < b/ {ng(h,)) < ¢, for some positive constants ¢y and ¢y,
(i) 2 (1/b) = O(n/by).

Then E[X:/g(1X,)]<{ o if and only if S,/ b,—0 a.s.

Proof Let ¢(x)=2x°/g(x). Then x*/g(x) satisfies (2.1) and thus the desired result follows
by Corollary 2.6.

We close this section by introducing an example of Corollary 2.6 :

Example 2.8. Let {X,,#>1} be a sequence of pairwise NQD random variables with

1
common distribution F(x). Set ¢(x) =|x|* and b,=n", 0<{ p< 1. Then condition (2.6) is

satisfied. Hence, E|X;|?< o if and only if S,/ nt? —>0a. s Let g(x) be an even function

that is positive and strictly increasing on [0, ©©) and satisfying g{x) 1o as x1 co.
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