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Bayes Factors for Independence and Symmetry
in Freund’'s Bivariate Exponential Model
with Censored Data

Jang Sik Chol), Dal Ho Kim? and Sang Gil Kang?

Abstract

In this paper, we consider the Bayesian hypotheses testing for independence and
symmetry in Freund’'s bhivariate exponential model with censored data. In Bayesian
testing problem, we use the noninformative priors for parameters which are improper
and are defined only up to arbitrary constants. And we use the recently proposed
hypotheses testing criterion called the intrinsic Bayes factor, Also we derive the
arithmetic and median intrinsic Bayes factors and use these results to analyze some
data sets.

1. Introduction

Let's consider a life testing experiment in which multiple two-component shared parallel
systems are put on test. In many cases of life testing and reliability analysis, two components
are assumed to have independent life time distributions. However, in many life testing
situations it is more realistic to assume some form of positive dependence among components.
This positive dependece among component life time arises from common environmental
stresses and shocks, from components depending on common sources of power, and so on. As
an example, we consider the paired organs like kidneys, eyes, ears or any other paired organs
in an individual as two component system. In these cases, each paired organ is correlated
each other. Freund (1961) formulated a bivariate extension of the exponential model as a
model for a system where the failure times of the two components may depend on each other.

For complete data set, Kunchur and Munoli (1994) obtained minimum variance unbiased
estimator for the system reliability. Hanagal (1996) et.al. obtained estimator of system
reliability from stress-strength relationship. Hanagal and Kale (1992) considered statistical
hypothesis testing for independence and symmetry from a frequentist viewpoint.

In Bayesian testing problem, the Bayes factor depend rather strongly on the prior
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distributions, much more so than in, say, estimation. So, the Bayes factor under proper priors
have been very successful. Frequently, however, elicitation of subjective prior distributions is
impossible, because of time or cost limitations, or resistance or lack of training of clients. Also
subjective elicitation can easily result in poor prior distribution and statistical analysis is often
required to appear objective. So, the literature on noninformative priors has grown enormously
over recent years. There have been several excellent books or review articles that have been
concerned with discussing or comparing different approaches to developing noninformative
priors(See Ghosh and Mukerjee, 1992).

However, noninformative priors such as Jeffrey’s (1961) priors or reference priors (Berger
and Bernardo (1989,1992)) are typically improper so that such priors are defined only up to
arbitrary constants which affects the values of Bayes factors. So, Geisser and Eddy (1979),
Spiegalhalter and Smith (1982), San Martini and Spezzaferri (1984) and QO’Hagan (1995) have
made efforts to compensate for that arbitrariness.

Berger and Pericchi (1996b) introduced a new model selection and hypotheses testing
criterion, called the Intrinsic Bayes Factors (IBF's) using a data-splitting idea, which would
eliminate the arbitrariness of improper priors. These can be constructed in very general
situations-nested, nonnested, and even irregular problems-and they seem to correspond to
actual Bayes factors, at least asymptotically. This approach has shown to be quite useful
(Berger and Pericchi (1996a), Varshavsky (1996) and Lingham and Sivaganesan (1997)).

In this paper, we consider a Bayesian approach to test independence and symmetry in
Freund's bivariate exponential model with bivariate censored data as extension of complete
data. Here we use noninformative priors as improper priors. Also we derive intrinsic Bayes
factors to solve our problem and give some numerical results to illustrate our results.

2. Preliminaries

The random variables (X, Y)are said to follow Freund’s bivariate exponential model with

parameters = (a, a’, B, ,B’) if the joint probability density function is given as

. _ [ aBexp[—By—(a+B—B)x], wx>0,
Axy:0) = { a Bexpl—a x—(a+B8—a)yvl, x>y0. @.1)

As a matter of convenience, we introduce the following notations.

ty ,2=1,2,---,m ! fixed censoring time of 7th observation for the first component X
ty, ,2=1,2,--,n : fixed censoring time of 7th observation for the second component Y.

Gli__' I(Xz> tx‘.), GL: 1— Gli; = ].,2,"',72..
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G2i=I(Yi>l‘y,), Gg,‘zl_Gzl‘, i:1,2,"',72.
Ri=IKX<Y), Ri=1-R,, i=1,2,,n

In system testing, we might observe:

(1) failures of both components( G};G%;=1).

(2) failure of one component and censoring of other component( Gy;Gy;+ G1:Go;=1).
(3) censoring of both components( Gy;Gy;=1).
Then lifetime (x;, y;) of ith item is observed as follows;

(x;, v =(min(x,, £,), min(y,, £,)). (2.2)

Hence, likelihood function is given as

f(x; yl 0)= zIZII{[]L‘(x“y;)] GiGi. . [—F(xi,yi)] GG |

[ TPXI v=y(x)f (3] GGk, [ F vl x=x (V) x(x)] GLG&} e
="M " " B expl— af Z; x;+ l; yit g;(x,v+y,'))]

- exp[ — A ,;,,xf"' z;ﬁyﬁr ;ﬁ(xﬁ PIE exp[—a'( gﬁxi— g;zyi)]
. exp[— B ( 1§M(y,-—x,—))]. (2.3)

Here, n;= ZR,.GL‘G;;', ng = ZZ}R?GLGE;', ny= ng‘GIiGy, ng = ; RiGLGSy,
ne= 21GiGu Su={i| RGiGH=1 or RGiGy=1),

Sy =1{i| RiG1,G3; =1 or RiG,Gy;=1}, S;=1{i| RiG,Gy=1},
SG= {Z | Gliczj: 1 }

We can obtain the maximum likelihood estimators for the parameters as follows;

~ ﬁl"‘ 74 %_ n2+ ng
“ = “xi+ fgzsyi_!_ lez‘gc(x{-‘_yi) ’ - z;“xi_l_ z,gg‘ﬁyi"l‘ ;S(x,-—i-y,-) !

a,= 7’l2 %'= nl —
24 Xi— Z;yi’ (yi—x)
iS5y i3, =5,

\/—n(@— f) has the asymptotic multivariate normal distribution with mean vector zero and
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covariance matrix X=((IY), 7,7=1,2,3,4) where I’ is the (4,/th element of inverse

matrix of Fisher information (I=(I;),7,7=1,2,3,4) with

h=—>=—" Irx=—"57 Iaaz‘n_?z: -7442L¥2 and I;=0, for #j=1,2,3,4.
a a B

Now, we introduce the intrinsic Bayes factor in the general hypotheses testing. As a matter
of convenience, we introduce the following notations.

X=(X,,X,): observation with density Ax|§), where 6@ is a (finite
dimensional parameter and @is parameter space.

®;: parameter space under ith hypothesis H; , i=1,2,, q.

Ax| 6, : the density under H;, i=1,2,", q.

x{8;) : the prior distribution under H;, =1,2,, q.

m{ x) : the marginal density of X under H; when use 7{8,), i=1,2,---,q.

b; © the prior probability of H; being true, i=1,2,--, q.

7Y(8,) : the improper prior distribution under H; , i=1,2,-, q.

mY(x) : the marginal density of X under H; when use 7(8;), i=1,2,-,q.

Then 722(6,) is usually written as m(8;) o h{6;), where h; is a function whose
integral over the ®;space diverges. Formally, we can write 77(8;) = c¢; h{8,), although the
normalizing constant ¢; does not exist, but treating it as an unspecified constant.

The posterior probability that H; is true is given as
P D=(5 2B, (2.4)
where B ;, the Bayes factor of H; to Hj, is defined by

| Rz 0)7(6))ds,

mix
B;‘,‘= J( ) = . (25)
mix) [ Ax|6)r(8)d0;
@z
The posterior probabilities in (2.4) are then used to select the most plausible hypothesis.
If one were to use some noninformative priors, then (2.5) becomes
N [ A=l 6)al(6)ab;
m.
B = (%) __Jo (2.6)

mi(x) [ fx|6)xl8)do;

Hence, the corresponding Bayes factor, BI}Z-, is indeterminate. One solution to this
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indeterminancy problem is to use part of the data as a training sample. Let x(/) denote the
part of the data to be so used and let x(~ [)be the remainder of the data, such that

0<mi(x( D)<oo, i=1,--,4. @7

In view (2.7), the posteriors 7(8; | x( D)) are well defined. Now, consider the Bayes factor,

B (), for the rest of the data x(— J), using (8, | x()) as the priors:

f@ﬂx(— D1 6;, x( D) (6; | x( 1))db;

Bih= = BJ;TZ- ><BJ)§( (), (2.3)
[ Ax(= 10, = 0)x(8; | 2 D)a, i
where B is given by (2.6) and
N,
N _ m (x( D)
Bi(x( D)= (2 D) ° (2.9)

In (2.8), any arbitrary ratio, c,-/ ¢; say, that multiples BZ}’{ would be cancelled by the ratio
¢;/c; forming the multiplicand in B7(x( })). Also, while the expression (2.9) renders B ()

in terms of the simpler marginal densities of x( /).
As training samples, Arithmetic and Median Intrinsic Bayes Factor play a fundamental role

in our testing H; i=1, -, ¢, we introduce the following definitions.

Definition 1.(Berger and Pericchi(1996b)) A training sample x( /), will called proper if (2.7)
holds and minimal if it is proper and none of its subsets is proper.

Definition 2.(Berger and Pericchi(1996b)) The Arithmetic Intrinsic Bayes factor of H; to
H i is

Ar_py 1 N
BB L ¥ Ba(0), 2.10)

where L is the number of all possible minimal training samples.

Definition 3.(Berger and Pericchi(1998)) The Median Intrinsic Bayes factor of H; to H;
is
BW= B - MELBT( ()], (2.11)
where ME indicates the median, here to be taken over all the training sample Bayes
factors.

We can also calculate the posterior probability of H; using (2.4), where B are replaced by
B4 and BY from (2.10) and (2.11).
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3. Bayesian Hypothesis Test

In Freund’s bivariate exponential model, we want to test the hypotheses of symmetry and

independence test. That is, the hypotheses of symmetry is H;: e=8, a = ,8’ V.S.
H, . not H, and the hypotheses of independence is Hj : a=a, B=§ vs. H, : not Hs.

Consider samples of sizes # from Freund’'s model with parameters &= (a, af’, B,ﬁ").
To test the hypothesis of symmetry based on the M.I.E.’s, Hanagal and Kale(1992) obtained
the test statistics as follows;
. w(a—P)* w( o — 2)?
if ~ 2+
(a+7P)

9
2. = Xoi-9
a ]

)
(a+ %)[ ¢ -8
B

then reject H; with significance level 7.

In similar method, to test the hypothesis of independence based on the ML.E.'s, they
obtained the test statistics as follows;

o= a)B . _ a(B- BV
(a+B(aB+ a) (a+B)(ah+ B7)

then reject Hj; with significance level 7.

2
= X@1-9

3.1 Symmetry Test

Here, the goal is to determine the set of all possible minimal training sample(MTS) for the
data (x,y to test Hy: e=f ,a =8 vs Hy: not H,. Here, 6,=(a,a) and
0= (a,a,B,8).

The noninformative priors for H; : a= £, a = B’ v.s. Hy : not H, are respectively given
by

28 = —ala— 3.1)
and
2(8,) = Mlﬁﬂ.. (3.2)

To derive the marginals with respect to the noninformative priors given by (3.1) and (3.2),

we first observe that the joint pdf of (=, y)is given by

n+n nytn ‘h !
, B LI 2T . . — 1,_|_ Z__|_ l,_|_ ;
Rz, )= a B8 a - - expl—al ;“x ;ﬁy l;ﬁ(x )]
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- exp[— & Z;Mxﬁr zgﬁyﬂr ;G(xﬁ w1 exp[-*af'( z;ﬁxi- ;ﬁy;—)]
. exp[ — B I;ﬂ(_y,-—xi))]. (3.3)

Moreover, the joint pdf of any four paired observations, ((x;,¥,), (xpyp), (x,¥),

(%, V) L, 1<jCERC I m=<pn, is given by
— LG I . ; GGy,
z‘EUE[I'M}J‘(J'«CZ‘, y) = z_EUl;[l_m){[f(xz-,yi)] [ Flx;, 9]

Glngx G;zGZ:} (-R1+R:.)

- [ FXl Y=y(xi)fY(yz')] [ T‘Y|X=x(yf)fx(xi)]

7y +ny ‘an-!—n; " he
= . .o

- 8" expl—a( ; x;+ ;S yit §<xi+yi)>1
cexpl—B( 20 xi+ 24 vit 2 (v exp[—a'( PIEEIDN y,-)]
=85y 1E Sy; =55 &S 15 Sog
. exp[—b"( E_EZS:. (yr-xi))]. (3.4)
Here, nii - ;I'm}RiGIz‘G;i: né= = (ng,m}R?GL‘G;"’ n;= = (ng,m}RiG;iGziy

Hg = e (J%L m}Ri GGy, Mg= )Glszi,

sk Lm
Su=1{i| RG}Gy;=1 or RGLGy=1, is{j, kI, m}},
Ses={i| RiG1,Gi=1 or RiG\Gy=1, ic{j,k I, m}},
S,=1{i| RiG},Gai=1, ic{j, b I, m}}, Sg=1{i| G,Gp=1}.

In the following lemma, we give the marginal densities for any four paired observations.

Lemma 1. For the minimal training sample case, we have the marginal density
my (x5, ¥7), 5y ¥2), (%1, ¥, (Kmy Yo)), ==1,2 under Hj,i=1,2 as follows.
mi ((x7, 9, G, ), (20, ¥, (K, ¥))
= I(ny+ ngt ny+ ne) » Ing+ ny)
ny+my

. 1
( 2 (yi—x)+ 2_55. (x;—y,) (35)

1€ 5y

ni+n'2+ﬂ;+ n‘,

. 1/2
2 %+ ‘Zs x;+ Zg.(xi+yi) )

=85y,
and

my (x5, 97, p, ), (0, VD, (X s Vo))

= I(nj+ng) - Mg+ n5) - I(ny) - Nny)
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. 1 ni+m . 1 72+ ng
( 2wt 20 vt Z(xi-l-yi)) ( 2. w20 vit 2 (it y)
=5y 1€ 85 €5 =5y, 1E Sy =S
1 " | g
( 2 (X — ) ) ( 2. (vi—x) ) ' (36)
1€ Sag €5y
Since the marginal densities (i, v, e v, (50, D), Koy Yo)) and

mév((xj;yj),(xksyk)s(xhyl):(xm’ym)) are finite for all 1=<y<A{(Km=<n under each
hypothesis, we conclude that any training sample of size four is an MTS., That is, the

marginal distribution is improper when the size of MTS is less 4. To prove this fact, we
must prove that the marginal distribution is improper when the size of MTS is 3. If the size

of MTS is equal to 3, that is, (%, + #y+ ny+ ns+ng=3), we can see that #n;+#x;<1 and
né-{-né=2, or ni+n;=2 and my+ng<1. In the case of #;+ n,<1 and né+né=2, we
can see that the marginal distribution of (3.4) with respect to the noninformative priors given
by (3.1) and (3.2) is infinite. In the case of n’l+n;=2 and né+ nlsél, we can check easily
by similar method.

The marginal densities corresponding to the full data (X, Y)for test H,: a=p, and

=R vs. H, : not H; can also be expressed in the following lemma.

Lemma 2. For the full data, we have the marginal density ' (x, y) under H;,7=1,2 as

follows.
N,
my(x, y)
= Iny+nytny+ns) - Nny + ny)

. 1/2
( = uxi+ 1§25x1'+ ;G(x,--l- yi)

) mtrgt st ns

1 n+ ny
. ( A( i)+ ;ﬁ(x,-— ) ) (3.7)

and
my (%, )

= I(ny+ny) - Iy + ns) - Iny) - I(ny)

ny+ ns

1 n+ny 1
. ( 1§1‘|x,-—}— lgzsyrf‘ ;S(X+yi)) ' ( Z;Hxi—l- l;ﬁy,--i- zgsls(gmryz))

. 1 1 ™
( p: 25xi_ p- zsyi) ( p: (yi—x5) ) ’ (38)
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To test H;: o=}, a = ,6" v.s. Hy 1 not H,, we get the following theorem from Lemmas
1 and 2.

Theorem 1. (i) The Bayes factor using the full data is given by

N
2= "M (x, ) 59
(ii) The Bayes factor using the  minimal training  sample (x, ()
=((%;,9), (e, ¥a), (%, 3D, (Xm,¥)) is given by
N
BY,((x, )( ) =% 9)D) (310

md((x, v)())

From the Theorem 1, the arithmatic intrinsic Bayes factor B to test Hy: a=248,

a‘=B' v.s. Hy : not H; is given by

Bi'=BY - —— SBY((x, 5)(D). 3.11)

(4)

Next we use the another intrinsic Bayes factor called median intrinsic Bayes factor(Berger
and Pericchi(1998)). They showed that the median intrinsic Baves factor seems to be a simple
and very generally applicable intrinsic Bayes factor, which works well for nested or
non-nested models, and even for small or moderate sample sizes.

From the Definition 3, Lemma 1, Lemma 2 and Theorem 1, we derive the median Bayes

factors to test H; : a= 5, a =fvs. H, : not H; as follow:
B¥ = BY - MEIBY,((x, »)( )] (3.12)

3.2 Independence Test

The goal here is to determine the set of all possible minimal training sample(MTS) for the
data (x, ) to test Hj: a=a, =8 vs. Hy: not Hs.

To test Hi: a= a, B=RBvs. H, : not H; we must to determine the set of all possible
MTS's for the data (x,y). Here, 63=(a,8) and 6,=(a,a,B,8). The noninformative

priors for Hj: a= a’, A= E’ v.s. Hy: not H; are respectively given by

(6 = L (3.13)
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and

1
aa B8

7 (8 = (3.14)

In the following lemma, we now derive the marginals with respect to the noninformative
priors given by (3.13) and (3.14).

Lemma 3. For the minimal training sample case, we have the marginal density

m( (%, 9, (o v0) . (21, v), (Xmy ¥w)), 1=3,4 under H;,i=3,4 as follows.

ACCTRD NCTR N ETIED N C TN )

ny+ny+mny

= [(ni+né+n;)-[(ni+né+né)-( ST xllJr T
L A Lot 1 AN i

=5y 1E 5p5 1€ 5y

(3.15)

1 nl+n2+n5
2yt 2t Z.(xi+y,-))

=5, =5 is 5

and mﬁv( (x;,v),(xp, v), (27, ¥),(%, ¥u)) is the same as that of Lemma 1.

Also, we conclude that any training sample of size three is an MTS.

Nextly the marginal densities corresponding to the full data (X, Y)for test H;y: a=a,

B=Bv.s. Hy . not Hj can also be expressed in the following lemma.

Lemma 4. For the full data, we have the marginal density #>(x, ¥), i=3,4 under

H,, 1=3,4 as follow.

m((x, ) = Ton+ np+ my) - Tmy+ my+ ng) - ( T A ear ) e
| T
( PIFEIS I gs(xﬁyi)) (3.16)
and m((x, y)) is the same as that of Lemma 2.
Nextly we get the following theorem from Lemmas 3 and 4.
Theorem 2. (i) The Bayes factor using the full data is given by
By = -24Ux ) (3.17)

my((x, v)
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(i) The Bayes factor using the (x, W( )= ((x;,y;), (xs 38, (x5, V), (Xpm ¥m)) Is given
by

N
N m3((x, (D)
By((x, »())= (D) " (3.18)

From the Theorem 2, the arithematic and median intrinsic Bayes factor BZ%[ to test

H; - a=a, B=RBvs. H, : not Hy is given by

B =Bl —— SBY((x, (D). (319)
(3)
and
B = BY; - MELBY((x, »)( )] . (3.20)

4. Simulation Study

In this section, we present some examples to illustrate for our findings regarding the test
) Hi:e=Ba=pvs Hy: not H and (i) Hs;: a=q B=fvs. H;: not Hy, We
take the prior probability of H; being true, p;,=0.5, =1,2,3,4.

The data are smnulated from Freund's bivariate exponential model of size 10 for the
parameters A=(a,a,B,8)=1(0.06,0.10,0.11,0.15) and the censoring times
t,=1t,, t=1,2, ", n are taken previous fixed values for convenience’ sake.

Table 1 indicates the generated Freund's bivariate exponential data. Here #* denotes the
censored data.
Table 2 indicates Bayes factors, the posterior probabilities P(H;| x,¥) and p-value based

on MLE.'s for testing H;: a=§ a=pvs. H, : not Hy. Also Table 3 indicates Bayes
factors, the posterior probabilities P(H,| x,y) and p-value based on MLE.'s for testing

H; - azq’ B=,[9’v.s. H, : not H;.

<Table 1> Freund’'s Bivariate Exponential Data
[ 1 2 3 4 5 6 7 3 9 10
x; 18147 0201 7984 5173 43900 7.694 36995« 6203 1.290 27.024
y; (13281 4.359 8595 4533 39.833 24481+ 7.966+ 19.958 21.904 39.748
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<Table 2> Bayes Factors, the Posterior Probabilities of for testing and
p-values for Hy : a=f a =fv.s. H, : not H

Tests B B PAH, | x,v)| P"(H, | x, %) | p-value
H, v.s. Hy 44101 4.0664 0.8151 0.8026 0.2426

<Table 3> Bayes Factors, the Posterior Probabhilities of for testing and
p—values for Hj : a=a B=pvs. H, : not H;

Tests Bﬁj Bﬁ" PAI(H4 | x, v) PM[(H4 | x, ) | prvalue

H; v.s. Hy 2.9140 25165 0.7445 0.7156 0.0915

First, from the table 2, the Bayes factors B‘ﬁ[ = 44101 and B%I = 40664 and the

posterior probability PN H, | x,y) = 08151 and P™(H, | x,¥)=0.8026. Also the p-value
based on MLE.'s is 0.2426. That is, there is evidence for H, in terms of the posterior
probabilities based on Bayes factors. But there is no evidence for H, in terms of the p-—value
based on M.LE.’s under significance level 0.05 and 0.01.

Second, from the table 3, the Bayes factors Bﬁf = 29140 and Bﬁl = 25165 and the

posterior probability P(H, | x,y) = 07445 and PY(H, | x,y)=0.7156. Also the p-value
based on M.LE.'s is 0.0915. That is, there is evidence for H, in terms of the posterior
probabilities based on Bayes factors. But there is no evidence for H, in terms of the p-value

based on MLE.'s under significance level 0.05. However, there is evidence for FH, in terms

of the p—value based on M.L.E.’s under significance level 0.10.

5. Concluding Remarks

As we see from the numerical results, the arithmetic and median intrinsic Bayes factors are
computed based on entire observations so that they give accurate interpretations and fairly
steady answers.

In general, there has been a considerable amount of literature on the controversy between a
p-value and a Bayes factor. From the numerical results, it has been noticed that a p-value

does not agree with the posterior probability that H, and H,; are correct. From the given
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parameters ﬁ=(a',a',B,B’)=(0.06,0.10,0.11,0.15), we can see that the model deviates

from independence and symmetry.

In conclusion, IBF's are completely automatic Bayes factors, in that they are based only on
the data and noninformative priors. IBF methodology can be easily applied to nonnested as
well as to irregular problems. They can also be applied in general when the samples come
from any distribution.
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