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A Systematic View on Residual Plots
in Linear Regression!

Myung-Wook Kahng?, Youngll Kim3), Chul H. Ahn4

Abstract

We investigate some properties of commonly used residual plots in linear regression
and provide some systematic insight into the relationships among the plots. We
discuss three issues of linear regression in this stream of context. First of all, we
introduce two graphical comparison methods to display the variance inflation factor,
Secondly, we show that the role of a suppressor variable in linear regression can be
checked graphically. Finally, we show that several other types of standardized
regression coefficients, besides the ordinary one, can be obtained in residual plots and
the correlation coefficients of one of these residual plots can be used in ranking the
relative importance of variables.

1. Introduction
Consider the standard regression model

y=XB+e (1.1

where y is an #X1 response random vector, X is an #xXp data matrix and £ is a px1

parameter vector to be estimated. We assume that the random vector & follows N(OQ, 1),
Scientific investigators are often confronted with the problem of explaining residuals after the
removal of some particular cause of variability. Therefore, it is sometimes convenient to

extend model (1.1) to include an extra carrier z into the model as follows

y=XB+tyz+e (1.2)

Let’'s assume that the extra carrier 2 is coming into the model in one dimension for the time being.

When the extra carrier =z is not needed to explain the vanability of ¥ not accounted for
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X, then the reduced model (1.1) is preferred over the full model (1.2). A vice versa situation
is possible. The decision between model (1.1) and model (1.2) is always difficult in practice.
Three possible causes of this difficulty are first of all, the size of the magnitude of effect of
z, secondly the possible association among the variables, and lastly the functional form of =z

entering the model. In model (1.2), we assume that 2z enters in linear functional form, but

this is not necessarily true. Sometimes 2z enters the model nonlinearly. There are many
statistical literatures containing this topic. We think that the book by Cook and
Weisberg(1994) is the most appropriate one.

In this article, we consider the following four residual plots for obtaining a graphical

evaluation of the effect of adding an explanatory variable z.

[1] The simple residual plot: Plot the vector of residuals for the regression of vy on X

versus z: (y— X B) versus z, where B minimizes (y—XBNy—XB).

[2] The partial residual plot: Plot the vector of (y—X B—72)+ vz versus z, where
(B, 7) minimizes (y— XB—r2) (y— XB—7z).
[3] The added variable plot: Plot the vector of residuals of ¥ on X versus the vector of
residuals of Z on X; (y—XPB) versus (z— Xa), where B minimizes
(y— XB)T(y— XB) and @ minimizes (z— Xa) (z—Xa).

[4] The additional R’ plot: Plot y versus the vector of residuals of Z on X, ¥ versus

(z— X @), where @ minimizes (z—Xa)(z—-Xa).

The simple residual plot is sometimes introduced as a part of regression modelling, as can
be seen in Atkinson(1985). But he mentioned this plot without any explanation on its linkage
with other plots. The partial residual plot is also called a component plus residual plot. The
partial residual plot has a long history, going back to Ezeikel(1924), This plot is heavily

studied by many authors who are especially trying to detect the nonlinearities of z. A simple
modification of this partial residual plot is developed by Mallows(1986). A more general
approach is made by Cook(1993). The added variable plot is also called a partial regressiorn
plot. It is another useful plot for checking the effect of an additional regressor. It is well
known that the residuals from the added variable plot are the same as the ones in full model
(1.2), and that the slope takes the same value as the model (1.2). For these reasons, it is
strongly favored by a majority in detecting the effects of individual observation. It is
sometimes introduced as a part of explaining the fitting procedure of the least squares

method. See Draper and Smith(1998) and Weisberg(1985) for examples. The additional R? plot
is given in Guttmann(1982). This plot will be further explained as the paper progresses.

In most textbooks about the regression, the residual analysis immediately follows after
mathematical treatment of the least squares method for estimating the parameters in the linear
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regression. Furthermore, the residual plots themselves are often treated in dealing with the
overall check of the model only. As a result, the residual analysis sometimes put the students
into difficulties in understanding how it contributes to the process of regression model
build-up. Each of the four plots mentioned above is related to each other. Therefore, much
more information can be obtained from the residual plots with careful comparison of them.
These plots are discussed further by Berk and Booth(1995).

In this article, we mentioned three issues; 1) variance inflation factor, 2) suppressor variable
and 3) its related issue, ranking of variables in the model. We explain the mechanism of
residual plots to show that these three issues can be analyzed graphically using four plots.

The three issues mentioned above will be discussed in the sequence in sections 2, 3 and 4.
Conclusion will be made in the 5th section.

2. Vanance Inflation Factor

It can be shown that the estimated slope 7* of the simple residual plot is related to ¥
under the full model (1.2) as

Y= (1—Rx)7 (2.1)

where R‘%X is the coefficient of determination when = is regressed on X. Note that the
slope in simple residual plot is always smaller than one in model (1.2) in absolute value.
It is immediate (although not explicit in the literature) from equation (2.1) that

~

¥/ 7 =1/1—R%) (2.2)

which is just the variance inflation factor VIF for =z, VIF,. Thus, the comparison of 7
and '}* will give us an idea of how large VIF, will be. For their graphical comparison, we

need a plot in addition to simple residual plot. Since the x-axis of simple residual plot is z,
the plot that has the same x—axis is the most appropriate one. We propose that the partial
residual plot is the one to be compared with. It is well known that the slope of the partial
residual plot is the same as the one in the full model (1.2).

VIF, can also be presented as the ratio of R? associated with the simple residual and

added variable plot as follows:

VIF, = Poss| Pim (2.3)

where 7’251-,,2 and rzadd are the correlation coefficients associated with the simple residual and

added variable plot, respectively, Note that the # in the simple residual plot is always
smaller than one in the added variable plot. Both of equations (2.2) and (2.3) will be useful in
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presenting the variance inflation factors of variables. But, in some cases when large. VIF
cannot be detected by the comparison of two slopes, which can occur when both of their fits
are not good, this comparison of two correlation coefficients may work well.

Detecting VIF, is further aided by another comparison. Stine(1995) has noted that the
ratio of two variances of estimated slopes of the added variable and partial residual plot is
just VIF,. As Cook and Weisberg(1982, p. 51) mentioned, if R%; is large, then the variability

around the slope in the residual plot can be much smaller than the one in the added variable
plot, and the partial residual plot will present an incorrect image of the strength of the

relationship between y and z. Comparing two variabilities along the slope will give us some
intuition on how significant the VIF, would be. This seems to be comparable to Atkinson’s

comment(1985, p. 75) that the ratio of horizontal scatter in the partial residual plot to that in
the added variable plot quantifies the extent to which the partial residual plot over—emphasizes

the importance of the relationship between y and z.
In summary, when all three plots are displayed as a part of routine diagnosis checking, we

get three methods to obtain additional information about VIF',. When the x and =z are

orthogonal, then three methods should be exactly the same.
3. Suppressor Variable

We teach in class that as we add a variable to the model the value of R’ increases
monotonically. But we usually do have mis—conception about the delicate mechanism of this

R?. We take the usual notations

SSR(X, z) = SSR(X) + SSR(z|X)

where SSR denotes the regression sum of squares and SSR(z|X) is the extra sum of
squares obtained after entering =z.
Hamilton(1987) mentioned that sometimes SSR(z|X)>SSR(z) is caused by the entering

variable 2. Sharpe and Roberts(1997) named 2z a suppressor variable, a variable that
increases the importance of another variable when it is added to the regression. Although this
phenomenon is rare in real data analysis, it happens under some certain conditions, Hamilton
(1987) showed that the following was the necessary and sufficient condition for his claim

7,Zyz-X ? 7,Zyz(l_-}?i}{) (31)

The lefthand side of (3.1) is the squared partial correlation coefficient. Weisberg(1985, p. 40)

has mentioned that when the association reflected by #* in added variable plot, which is just
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the squared correlation coefficient between y and z given X is greater than 7’32, then X
and z interact to explain more than the sum of RiX and Viz. Obviously he did not take
into consideration the effect of 'R?VX. Therefore, we had some thoughts to devise a proper and
simple graphical comparison. Note that 7%, . x( I—RE,X) is just the additional increase of R*
when the variable z enters the model. This is just the squared correlation coefficient between

y and (z2— X ’&). It can be shown that although the y-axis is different from the one in

the added variable plot, the estimated slope of the additional R? plot is the same as the one
in full model (1.2). See Guttmann(1982) for details. But since the residuals are different from
the ones in the full model, it is not frequently used in practice, unlike the added variable plot.

Still it would be helpful to explain the concept of the additional increase of &* graphically.
Furthermore it is nice to get additional information about the peculiar issue raised by
Hamilton(1987).

In conclusion, when the additional R* plot shows much stronger association than the simple
plot of y vs z, then we say the sum of SSRs due to individual X and z is less than
the overall SSR due to both X and z. Routinely we do have information about (z— X'a)
when constructing the added variable plot, so this comparison does not require additional
computational work. When X and z are orthogonal to each other, then obviously
SSR(z|X) = SSR(z).

4. Standardized Regression Coefficient

In most social science research work there are some interests concerning the rank of
relative importance of different variables in the model. Statistical packages such as SPSS
provide the printouts on the standardized coefficient denoting the following relationship

between usual 3\' and the standardized coefficient B, for z

B, = ¥xS,/8,

where S, and S, are the standard deviation of the variables z and 1y, respectively. But

many people make cautionary remarks that the rankings of the standardized coefficients in
terms of absolute magnitude does not necessarily reflect the importance of variables in

explaining the varability of y. Many textbooks give warnings against the misuse of this
automatic computer generated output. But none of the textbooks had explained the relationship
between this standardized coefficient and the correlation coefficients of various residual plots.
The correlation coefficients of the plots from [1], [2], [3], and [4] are computed algebraically
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as follows:
(11 %" - 8./ (S, - V1-R%)
[21 %+ S./V 21— R x) + 7S
131 %+ (S.V1=R%) [ (S, -V1— Rox)
[4] %~ (S.V1-R%) /S,

From (4.1), we immediately see that all of these correlation coefficients are other measures
of standardized regression coefficient except those appropriate adjustments taking place in each
formula in (4.1). And this suggests that the appropriate correlation coefficients may be used in
ranking the relative importance of variables. The appropriate correlation coefficients are those
associated with [3] and [4].

The correlation coefficient derived from added wvariable plot 1s a good measure in

(4.1

determining the ranks of variables according to the size of partial f{-values for regression

coefficient. In other words, the ranks according to the partial #-values for coefficients are the
same as those according to these partial correlation coefficients. This is based on the result of

Stapleton(1995), ﬁz.x= d/(1+d), where d= £/(n—p—1). But all except the last one
still lack Interpretations on determining the exact size of contribution of each variable in the
model,

The correlation coefficient from the additional R* plot compares each variable’s contribution

in terms of additional increase of R’ over the variability explained by other variables in the
model. Bring(1994) had derived a very similar measure of standardized regression coefficient
like this, with a different adjustment. His measure seemed to follow a hard path for
interpretation. He took the degrees of freedom into consideration. However, ours has a more
clear interpretation. We admit that the exact contribution of different variables we defined here
may not necessarily be accepted by the social researchers. Neverthless, when we are
interested im the relative importance of different variables we think that this is the right
choice. The best thing is that we visually compare the relative importance of different
variables in terms of increase(reduction) of R? if a variable entered(omitted). Futhermore, the
ratio of two correlation coefficients from the additional R* plot is exactly the same as the
ratio of corresponding partial f-values. Therefore, comparing partial #-values is equivalent to

considering the reduction in R?, obtained by eliminating each of the variables. See
Bring(1994) for similar results. In our opinion, it seems very appealing to define the exact
contribution of variables in terms of increase of R°.

Before we conclude this section, we'd like to say that it is a common practice to have plots
in original scale of measurement in order to preserve the symptoms such as heterogeneity of



A Systematic View on Residual Plots in Linear Regression 43

variance or non-linearity of entering variable. Standardized versions of residual plots, Le. plots
obtained after standardizing all the variables before analysis, are not recommended for these

reasons.

5. Examples

To illustrate the concepts explained in Sections 2, 3 and 4, we use the data as described by
Neter et al. (1996, p.335). The data consist of four explanatory variables — blood clotting

score( X;), prognostic index( X,), enzyme function test score( X3), liver function test score
( X4). The response is survival time( Y'). The original response variable is common logarithm
( log ) transformed to build a regression model according to their suggestion.

1. VIF: Suppose all other explanatory variables but X3 are in the model. Figures 1 to 3

represent simple residual plot, partial residual plot, and added variable plot, repectively. The
VIF value for X3 is 1.678. The impact of VIF for X, is graphically displayed as the

ratio of two slopes, 0.009475 for Figure 2 and 0.005646 Figure 1. Both the ratio of two 7%,
0.9211 for Figures 3 and 0.5489 for Figures 1, and the ratio of two estimated variance of
slope regression coefficients, 0.0003847° for Figures 3 and 0.0002969% for Figures 2, show
the same value equal to VIF for X.

2. Suppressor Variable: After a preliminary examination of the full model, the variable X,
is dropped. Unlike the full model, the reduced model shows that there exists two suppressor
variables, X and X,. Figure 4 is the additional R? plot for X3, of which # is shown to

be greater than that of Figure 5, which is just the plot of log, ¥ versus X;. The two

actual 7% values are (.5343 and 0.4424 for Figures 4 and 5, respectively.
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Figure 1: simple residual plot Figure 2: partial residual plot
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3. Ranking of Variables: Two more additional R? plots are displayed for X, X, together
with X3. New versions of standardized regression coefficients are obtained from Figure 6,
Figure 7 and Figure 4. The values of correlation coefficient are 0.399, 0.571 and 0.731 for
X, X, and X3, respectively. According to the size of these values it seems that X3 is
the most important and X, the least important from the additional R? viewpoint. For

reference the conventional standardized regression coefficients are computed for X;, X5, and

X3. They are 0.405, 0.574, and 0.739, respectively. Additional R? for X, X,, and X,

are (.159, 0.327, and 0.534, respectively.

Traditionally in most regression textbooks explanations are given only to the individual
residual plot neglecting the systematic view of various plots. We believe that a comparative
study of various residual plots not only reveals much more information on the three issues
raised here but also helps students understand the basic mechanism of the underlying fitting
process of regression.
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Figure 7: additional R? Plot of X,

6. Conclusions

We have made some useful remarks on the commonly cited residual plots in linear
regression to get additional information about 1) the VIF, 2) the suppressor variable, and 3)
the interpretations of correlation coefficients. All of these can be readily obtained from direct
interpretation of the residual plots. Some discussions on the relationship among the plots will
help teachers in convincing students the usefulness of residual plots. We hope that these
materials will be helpful in teaching regression to students inside and outside the field of
statistics.
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