Abstract
We explore the structure and usefulness of CERES plot as a basic tool for dealing with curvature as a function of the new predictor in nonlinear regression. If a predictor has a nonlinear effect and there are nonlinear relationships among the predictors the partial residual plot and augmented partial residual plot are not able to display the correct functional form of the predictor. Unlike these plots the CERES plot can show the correct from. In situations where nonlinearity exists in two predictors we extend the idea of CERES plot to three dimensions, This is illustrated by simulated data.