On the weak law of large numbers for weighted sums of pairwise negative quadrant dependent random variables[†]

Tae-Sung Kim¹ and Jong Il Baek²

ABSTRACT

Let $\{X_n, n \geq 1\}$ be a sequence of pairwise negative quadrant dependent (NQD) random variables and let $\{a_n, n \geq 1\}$ and $\{b_n, n \geq 1\}$ be sequences of constants such that $a_n \neq 0$ and $0 < b_n \to \infty$. In this note, for pairwise NQD random variables, a general weak law of large numbers of the form $(\sum |a_j|X_j - \nu_n)/b_n \stackrel{P}{\longrightarrow} 0)$ is established, where $\{\nu_n, n \geq 1\}$ is a suitable sequence.

AMS 2000 subject classifications; 60F05

Keywords: negatively quadrant dependent random variables, weak law of large numbers; weighted sum

1. INTRODUCTION

A sequence $\{X_n, n \geq 1\}$ of random variables is called pairwise positive quadrant dependent (PQD) if for each pair $i, j \ (i \neq j)$ and for all $r_i, r_j \in \mathbb{R}$ $P\{X_i > r_i, X_j > r_j\} \geq P\{X_i > r_i\}P\{X_j > r_j\}$ (or $P\{X_i \leq r_i, X_j \leq r_j\} \geq P\{X_i \geq r_i\}P\{X_j \geq r_j\}$) and it is called pairwise negative quadrant dependent (NQD) if for each pair $i, j \ (i \neq j)$ and for all $r_i, r_j \in \mathbb{R}$ $P\{X_i > r_i, X_j > r_j\} \geq P\{X_i > r_i\}P\{X_j > r_j\}$ (or $P\{X_i \geq r_i, X_j \geq r_j\} \leq P\{X_i \geq r_i\}P\{X_j \geq r_j\}$. These definitions were introduced by Lehmann(1966).

Let $\{X_n, n \geq 1\}$ be a sequence random variables and $\{a_n, n \geq 1\}$ and $\{b_n, n \geq 1\}$ sequences of constants with $a_n \neq 0$, $n \geq 1$, $0 < b_n \to \infty$. Then $\{a_n X_n, n \geq 1\}$ is said to obey the general weak law of large numbers (WLLN) if the normed

[†]This work was supported by WonKwang University Research Grant in 2000.

¹Professor Department of Statistics WonKwang University Iksan, Chonbuk, 570-749, Korea

²Associate Professor Department of Statistics WonKwang University Iksan, Chonbuk, 570-749, Korea

weighted sum $\left(\sum_{j=1}^{n} a_j X_j - \nu_n\right)/b_n$ converges in probability to zero, where $\{\nu_n, n \geq 1\}$ is a suitable sequence.

The WLLN for iid random variables which are stochastically dominated by a random variable X has been derived by Adler and Rosalsky(1991).

In this note we derive the WLLN for the pairwise NQD random variables with the same distribution function F(x).

In section 2 we study some preliminary results and in section 3, we derive the main results for sums of pairwise NQD random variables with the same distribution F(x).

2. PRELIMINARIES

Lemma 2.1. (Matula, 1992) If $\{X_n, n \geq 1\}$ is a sequence of pairwise NQD random variables, $\{f_n, n \geq 1\}$ a sequence of nondecreasing functions $f_n : \mathbb{R} \to \mathbb{R}$, then $\{f_n(X_n), n \geq 1\}$ are also pairwise NQD.

From Lemma 2.1 we obtain the following result: Put

$$X'_{n} = X_{n}I[|X_{n}| \le c_{n}] + c_{n}I[X_{n} > c_{n}]$$
$$-c_{n}I[X_{n} < -c_{n}], \text{ for } c_{n} \ge 0$$
(2.1)

and let $\{X_n, n \geq 1\}$ be a sequence of pairwise NQD random variables. Then $\{X'_n, n \geq 1\}$ is also a sequence of pairwise NQD.

Rosalsky and Taylor (1991) have derived the following results under assumption that $\{X_n, n \geq 1\}$ is a sequence of independent random variables which are stochastically dominated by X. In this section only using the condition that the X_n are identically distributed Lemmas 2.2 and 2.3 will be proved.

Lemma 2.2. Let $\{X_n, n \geq 1\}$ be a sequence of random variables with the same distribution function F(x). Let $\{a_n, n \geq 1\}$ and $\{b_n, n \geq 1\}$ be sequences of constants with $a_n \neq 0, 0 < b_n \to \infty, n \geq 1$. Put

$$c_n = \frac{b_n}{|a_n|}$$

and define

$$X_{nj} = X_j I(|X_j| \le c_n) + c_n I(X_j > c_n) - c_n I(X_j < -c_n), \ 1 \le j \le n, \ n \ge 1.$$
If

$$nP\{|X_1| > c_n\} = o(1) \tag{2.2}$$

then the WLLN

$$\frac{\sum_{j=1}^{n} |a_{j}|(X_{j} - X_{n}j)}{b_{n}} \xrightarrow{P} 0$$
 (2.3)

obtains.

Proof: For arbitrary $\epsilon > 0$,

$$P\left\{\frac{\left|\sum_{j=1}^{n}|a_{j}|(X_{j}-X_{nj})\right|}{b_{n}}>\epsilon\right\} \leq P\left\{\bigcup_{j=1}^{n}[X_{j}\neq X_{nj}]\right\}$$

$$\leq \sum_{j=1}^{n}P\{|X_{j}|>c_{n}\}$$

$$\leq P\{|X_{1}|>c_{n}\}=o(1)$$

by (2.2). Hence the desired result follows.

Lemma 2.3. Let $\{X_n, n \geq 1\}$ be a sequence of random variables with the same distribution function F(x). Let $\{a_n, n \geq 1\}$ and $\{b_n, n \geq 1\}$ be sequences of constants with $a_n \neq 0$, $0 < b_n \to \infty$ $n \geq 1$, and suppose that either

$$\frac{b_n}{|a_n|} \uparrow, \ \frac{b_n}{n|a_n|} \downarrow, \ \sum_{j=1}^n |a_j|^2 = o(b_n^2), \ and \ \sum_{j=1}^n \frac{b_j^2}{j^2|a_j|^2} = O\left(\frac{b_n^2}{\sum_{j=1}^n |a_j|^2}\right) \quad (2.4)$$

or

$$\frac{b_n}{|a_n|} \uparrow, \quad \frac{b_n}{n|a_n|} \to \infty,$$

$$\sum_{n=1}^{n} |a_j|^2 = O(n|a_n|^2), \text{ and } \sum_{j=1}^{n} \frac{b_j^2}{j^2 |a_j|^2} = O\left(\frac{b_n^2}{\sum_{j=1}^{n} |a_j|^2}\right)$$
 (2.5)

or

$$\frac{b_n}{n|a_n|}$$
, and $\sum_{j=1}^n |a_j|^2 = O(n|a_n|^2)$ (2.6)

hold. Then (2.2) entails that

$$\sum_{j=1}^{n} |a_j|^2 P\{|X_1| > c_n\} = o(|a_n|^2)$$
(2.7)

and

$$\sum_{j=1}^{n} |a_j|^2 E|X_1|^2 I(|X_1| \le c_n) = o(b_n^2)$$
(2.8)

hold, where $c_n = \frac{b_n}{|a_n|}$.

Proof: We will use the idea of the proof of Theorem in Rosalsky and Taylor (1991). To prove (2.7), observe that under (2.4)

$$\frac{1}{|a_n|^2} \sum_{j=1}^n |a_j|^2 P\{|X_1| > c_n\}
\leq \frac{Cb_n^2 P\{|X_1| > c_n\}}{|a_n|^2 \sum_{j=1} n(c_j^2/j^2)}
\leq \frac{Cc_n^2 P\{|X_1| > c_n\}}{n(c_n^2/n^2)} = CnP\{|X_1| > c_n\} = o(1),$$

where C is a positive constant, by (2.2). On the other hand, under (2.5) or (2.6)

$$\frac{1}{|a_n|^2} \sum_{j=1}^n |a_j|^2 P\{|X_1| > c_n\} \le CnP\{|X_1| > c_n\} = o(1)$$

again by (2.2) and so (2.7) obtains. To prove (2.8). note that $c_n \uparrow$ under (2.4), (2.5) or (2.6) and that (2.5) and (2.6) individually ensure

$$\sum_{j=1}^{n} |a_j|^2 = o(b_n^2). \tag{2.9}$$

Thus (2.9) holds under (2.4), (2.5) or (2.6). Let $c_0 = 0$ and $d_n = c_n/n$, $n \ge 1$. Define an array $\{B_{nk}, 0 \le k \le n, n \ge 1\}$ by

$$B_{nk} = \begin{cases} \left(\frac{1}{b_n^2} \sum_{j=1}^n |a_j|^2\right) \left(\frac{c_{k+1}^2 - c_k^2}{k}\right) & \text{for } 1 \le k \le n-1, \ n \ge 2\\ 0, & \text{for } k = 0, \ n, \ n \ge 1. \end{cases}$$

It will now be shown that $\{B_{nk}, 0 \le k \le n, n \ge 1\}$ is a Toeplitz array, that is,

$$\sum_{k=0}^{n} |B_{nk}| = O(1) \tag{2.10}$$

and

$$B_{nk} \ to0 \ as \ n \to \infty \ for \ all \ fixed \ k \ge 0.$$
 (2.11)

Clearly (2.9) entails (2.11). To verify (2.10), note that $B_{nk} \geq 0$, $0 \leq k \leq n$, $n \geq 1$, since $c_n \uparrow$ and that $k \geq 1$,

$$\frac{c_{k+1}^2 - c_k^2}{k} = \frac{(k+1)^2 d_{k+1}^2 - k^2 d_k^2}{k} \le (k+3) d_{k+1}^2 - k d_k^2 \tag{2.12}$$

Then under (2.4), since $d_n \downarrow$, it follows from (2.12) that

$$\frac{c_{k+1}^2-c_k^2}{k} \leq 3d_k^2 = \frac{3c_k^2}{k^2}, \ k \geq 1.$$

Hence, for $n \geq 2$,

$$\sum_{k=0}^{n} B_{nk} \le \left(\frac{3}{b_n^2} \sum_{j=1}^{n} |a_j|^2\right) \left(\sum_{k=1}^{n-1} \frac{c_k^2}{k^2}\right) = O(1)$$

and so (2.10) holds. Now under (2.5) or (2.6), for $n \ge 2$,

$$\sum_{k=0}^{n} B_{nk} \leq \left(\frac{1}{b_{n}^{2}} \sum_{j=1}^{n} |a_{j}|^{2}\right) \left(\sum_{k=1}^{n-1} ((k+3)d_{k+1}^{2} - kd_{k}^{2})\right) \quad (by(2.12))$$

$$\leq \left(\frac{1}{b_{n}^{2}} \sum_{j=1}^{n} |a_{j}|^{2}\right) \left(\sum_{k=1}^{n-1} ((k+1)d_{k+1}^{2} - kd_{k}^{2})\right)$$

$$+ \left(\frac{3}{b_{n}^{2}} \sum_{j=1}^{n} |a_{j}|^{2}\right) \left(\sum_{k=1}^{n-1} d_{k+1}^{2}\right)$$

$$\leq \frac{Cn}{c_{n}^{2}} n d_{n}^{2} + \left(\frac{3}{b_{n}^{2}} \sum_{j=1}^{n} |a_{j}|^{2}\right) \left(\sum_{k=1}^{n-1} d_{k+1}^{2}\right)$$

$$= C + \left(\frac{3}{b_{n}^{2}} \sum_{j=1}^{n} |a_{j}|^{2}\right) \left(\sum_{k=1}^{n-1} d_{k+1}^{2}\right), \quad (2.13)$$

where C is a positive constant.

Under (2.5), for $n \geq 2$,

$$\left(\frac{3}{b_n^2} \sum_{j=1}^n |a_j|^2\right) \left(\sum_{k=1}^{n-1} d_{k+1}^2\right) \le \left(\frac{C}{b_n^2} \sum_{j=1}^n |a_j|^2\right) \left(\sum_{k=1}^n \frac{c_k^2}{k^2}\right) = O(1).$$

Under (2.6), for $n \geq 2$,

$$\left(\frac{3}{b_n^2} \sum_{j=1}^n |a_j|^2\right) \left(\sum_{k=1}^{n-1} d_{k+1}^2\right) \leq \frac{3d_n^2}{b_n^2} \left(\sum_{j=1}^n |a_j|^2\right) (n-1) \quad (since \ d_n \uparrow) \\
= O(1).$$

Thus, under (2.5) or (2.6), recalling (2.13)

$$\sum_{k=0}^{n} B_{nk} = O(1)$$

and again (2.10) holds, there by proving that $\{B_{nk}, 0 \le k \le n, n \ge 1\}$ is a Toeplitz array. By (2.2) and the Toeplitz lemma (see, e.g., Knopp p74 or Loeve p250)

$$\sum_{k=0}^{n} B_{nk} k P\{|X_1| > c_k\} = o(1). \tag{2.14}$$

Next, note that

$$\begin{split} &\frac{1}{b_n^2} \sum_{j=1}^n |a_j|^2 E|X_1|^2 I(|X_1| \le c_n) \\ &= \frac{1}{b_n^2} \sum_{j=1}^n |a_j|^2 \sum_{k=1}^n E|X_1|^2 I(c_{k-1} < |X_1| \le c_k) \\ &\le \frac{1}{b_n^2} \sum_{j=1}^n |a_j|^2 \sum_{k=1}^n c_k^2 P\{c_{k-1} \le |X_1| \le c_k\} \\ &= \frac{1}{b_n^2} \sum_{j=1}^n |a_j|^2 \sum_{k=1}^n c_k^2 (P\{|X_1| > c_{k-1}\} - P\{|X_1| > c_k\})) \\ &= \frac{1}{b_n^2} \sum_{j=1}^n |a_j|^2 (c_1^2 (P\{|X_1| > 0\} - c_n^2 P\{|X_1| > c_n\}) \\ &+ \sum_{k=1}^{n-1} (c_{k+1}^2 - c_k^2) P\{|X_1| > c_k\})) \\ &\le \frac{1}{b_n^2} \sum_{j=1}^n |a_j|^2 \sum_{k=1}^{n-1} \frac{c_{k+1}^2 - c_k^2}{k} k P\{|X_1| > c_k\} + o(1) \\ &= \sum_{k=0}^n B_{nk} k P\{|X_1| > c_k\} + o(1) \\ &= o(1) \quad (by \ (2.14)), \end{split}$$

thereby establishing (2.8) and the proof is complete.

Remark Note that assumption of independence (or pairwise NQD) is not required in Lemmas 2.2-2.3

3. MAIN RESULTS

Theorem 3.1. Let $\{X_n, n \geq 1\}$ be a sequence of pairwise NQD random variables with the same distribution function F(x). Let $\{a_n, n \geq 1\}$ and $\{b_n, n \geq 1\}$ be constants with $a_n \neq 0$, $0 < b_n \to \infty$, $n \geq 1$ and suppose that either (2.4) or (2.5) or (2.6) hold. If (2.2) holds then the WLLN

$$\frac{\sum_{j=1}^{n} |a_{j}|(X_{nj} - EX_{nj})}{b_{n}} \xrightarrow{P} 0 \tag{3.1}$$

obtains, where X_{nj} is defined as in Lemma 2.2.

Proof: First note that $\{|a_j|(X_{nj} - EX_{nj})\}$'s are pairwise NQD by Lemma 2.1. It follows from Lemma 2.3 and pairwise negative quadrant dependence condition that for arbitrary $\epsilon > 0$,

$$P\left\{\frac{\left|\sum_{j=1}^{n}|a_{j}|(X_{nj}-EX_{nj})\right|}{b_{n}} > \epsilon\right\}$$

$$\leq \frac{1}{\epsilon^{2}b_{n}^{2}}E\left|\sum_{j=1}^{n}|a_{j}|(X_{nj}-EX_{nj})\right|^{2}$$

$$\leq \frac{1}{\epsilon^{2}b_{n}^{2}}\sum_{j=1}^{n}|a_{j}|^{2}E(X_{nj}-EX_{nj})^{2}$$

$$\leq \frac{1}{\epsilon^{2}b_{n}^{2}}\sum_{j=1}^{n}|a_{j}|^{2}E(X_{nj}^{2})$$

$$\leq \frac{1}{\epsilon^{2}b_{n}^{2}}\sum_{j=1}^{n}|a_{j}|^{2}E(X_{nj}^{2})$$

$$\leq \frac{1}{\epsilon^{2}b_{n}^{2}}\sum_{j=1}^{n}|a_{j}|^{2}EX_{j}^{2}I(|X_{j}| \leq c_{n}) + \frac{1}{\epsilon^{2}b_{n}^{2}}\sum_{j=1}^{n}|a_{j}|^{2}c_{n}^{2}P\{|X_{j}| > c_{n}\}$$

$$\leq \frac{1}{\epsilon^{2}|a_{n}|^{2}}\sum_{j=1}^{n}|a_{j}|^{2}P\{|X_{1}| > c_{n}\} + \frac{1}{\epsilon^{2}b_{n}^{2}}\sum_{j=1}^{n}|a_{j}|^{2}|X_{1}|^{2}I(|X_{1}| \leq c_{n})$$

$$= o(1),$$

- by (2.7) and (2.8). Thus the desired result (3.1) follows. Finally from Lemma 2.2 and Theorem 3.1 we obtain the following result:
- **Theorem 3.2.** Let $\{X_n, n \geq 1\}$ be a sequence of pairwise NQD random variables with the same distribution function F(x). Let $\{a_n, n \geq 1\}$ and $\{b_n, n \geq 1\}$ be constants with $a_n \neq 0$, $0 < b_n \to \infty$, $n \geq 1$, and suppose that either (2.4) or (2.5) or (2.6) holds. If (2) holds then the WLLN

$$\frac{\sum_{j=1}^{n} |a_j| (X_j - EX_{nj})}{b_n} \xrightarrow{P} 0 \tag{3.2}$$

obtains, where $X_{nj} = X_j I(|X_j| \le c_n) + c_n I(X_j > c_n) - c_n I(X_j < -c_n), \ 1 \le j \le n, \ n \ge 1 \ and \ c_n = \frac{b_n}{|a_n|}.$

REFERENCES

- Adler, A. and Rosalaky, A. (1991). On the weak law of large number for normed weighted sums of iid random variables, *Ann. Probab.* 14 191-202.
- Adler, A., Rosalsky, A and Taylor, R. L. (1991). A weak law for normed weighted sums of random elements in Rademacher Type p Banch space, *Journal Multivariate Analysis*. **37** 259-268.
- Chow, Y. S. and Teicher, H. (1988). Probability Theory: Independence, Interchangeability, Martingales, 2nd ed., Spring-Verlag, New York.
- Feller, W. (1946). A limiting theorem for random variables with infinite moments, American Journal of Mathematics. 68 257-262.
- Knopp, K. (1951). Theory and Application of Infinite Series, 2nd English ed. Blackie, London.
- Lehmann, E. L. (1966). Some concepts of dependence, Annals of Mathematical Statistics. 37 1137-1153.
- Loeve M. (1977). Probability Theory I, 4th ed. Springer-Verlag, New York.
- Matula, P. (1992). A note on the almost sure convergence of sums of negatively dependent random variables, *Statistics and Probability Letters.* **15** 209-213.