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Intrinsic Bayes Factors for Exponential Model
Comparison with Censored Data

Dal Ho Kim, Sang Gil Kang and Seong W. Kim !

ABSTRACT

This paper addresses the Bayesian hypotheses testing for the compari-
son of exponential population under type Il censoring. In Bayesian testing
problem, conventional Bayes factors can not typically accommodate the use
of noninformative priors which are improper and are defined only up to ar-
bitrary constants. To overcome such problem, we use the recently proposed
hypotheses testing criterion called the intrinsic Bayes factor. We derive the
arithmetic, expected and median intrinsic Bayes factors for our problem.
The Monte Carlo simulation is used for calculating intrinsic Bayes factors
which are compared with P-values of the classical test.

Key Words : Exponential Distribution; Type II Censoring; Noninformative
Priors; Intrinsic Bayes Factors; P-Values.

1. Introduction

In lifetime studies, the exponential distribution is one of the most frequently
used distributions. There are a huge body of literatures concerned with exponen-
tial models in the lifetime and reliability analysis. Also many works have been
done under the Bayesian approach since the middle of 1970.

The comparison of two lifetime distributions is often important in statistical
analyses of lifetime data. When the distributions are one-parameter exponential
distributions, this amounts to a comparison of their failure rates or means. Clas-
sical approach to this hypothesis testing problem for type II censored data has
been well-summarized in the literatures (see for example Lawless (1982)). Re-
cently Colosimo and Cordeiro (1998) have considered the Bartlett correction for

'Department of Statistics, Kyungpook National University, Taegu, 702-701, Korea.



124 Dal Ho Kim, Sang Gil Kang and Seong W. Kim

the likelihood ratio (LR) tests for the equality of k(> 2) exponential distributions
based on type II censored samples.

The primary objective of this paper is to provide a Bayesian alternative to
the classical test for the comparison of two exponential populations under type
IT censoring using noninformative priors. Although we are concerned exclusively
with type II censoring, the general methods are applicable to other censoring
schemes as well.

In Bayesian testing problem, the Bayes factor under proper priors or infor-
mative priors have been very successful. However, limited information and time
constrains often the use of noninformative priors. Since noninformative priors
such as Jeffrey’s (1961) priors or reference priors (Berger and Bernardo (1989,
1992)) are typically improper so that such priors are only up to arbitrary con-
stants which affects the values of Bayes factors. Many people have made efforts
to compensate for that arbitrariness. See Geisser and Eddy (1979), Spiegalhalter
and Smith (1982), San Martini and Spezzaferri (1984) and O’Hagan (1995) for
related works.

Berger and Pericchi (1996b) introduced a new model selection and hypotheses
testing criterion, called the Intrinsic Bayes Factor (IBF) using a data-splitting
idea, which would eliminate the arbitrariness of improper priors. This approach
has shown to be quite useful in several statistical areas. (cf. Berger and Pericchi
(1996a), Varshavsky (1996) and Lingham and Sivaganesan (1997)).

The outline of the remaining sections is as follows. In Section 2, we review the
concept of the IBF methodology. In Section 3, we specifically derive expressions
for IBFs to solve our problem. Finally, we give some numerical examples to
illustrate our results and contrast it with classical method.

2. Preliminaries

Let Y = (Y},---,Y,) be an observation with density f(y|6), where 8 € O is
a vector of unknown parameters. Suppose that we wish to test the hypotheses
H,:0¢€0; where ©;, C 0,2 =1,--- ,¢q. Let 7;(8) be the prior distribution for
# under H;, and let p; be the prior probability of H;, : = 1,---,¢. Then the
posterior probability that H; is true is

' -1
P(Hily) = (Z %Bﬁ) (2.1)
j=1 "
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where Bj;, the Bayes factor of H; to H;, is defined by

m;(y) f@j f(yl0)=;(6)d0
mi(y)  Jo, F(y18)mi(8)d8°

Bji = (2.2)
m;(y) being the marginal or predictive density of Y under H,. The posterior
probabilities in (2.1) are used to select the most plausible hypothesis.

If we use some noninformative priors 7V (6), (2.2) becomes

gy _ ™) _ o, f(yw)wj-v(e)da.
omiy) T fo, flylO)n Y (6)d8

N

i

(2.3)

A noninformative prior 7' (8) is often improper, and is defined only up to arbi-
trary constants.

Hence, the corresponding Bayes factor, B;}’, is indeterminate. One solution
to this indeterminancy problem, due to Berger and Pericchi (1996b), begins with
the assumption that we can split the data vector y into y (), the so-called training

sample, and the remainder of the data y{~1), such that

v

0<mMy(D) <o i=1,--,q. (2.4)

In view of (2.4), the posteriors 7V (6ly(l}) are well defined. Now, consider the
Bayes factor, Bj; (1), for the rest of the data y(—{), using ¥ (8]y(!)) as the priors:

Jo, Fy (=018, y ()7 (8ly(1))df

Bj(l) = == = BN x BN (y(l 2.
i = COIe y ()N ey Dy~ o X Bu v 29)
where B}\[ is given by (2.3) and
mN(y (1
Bl (y(1)) = W%%—; (2.6)

In (2.5), any arbitrary ratio, ¢j/c; say, that multiples Bﬁ' would be cancelled
by the ratio ¢;/c; forming the multiplicand in Bg (y({)). Also, while the expres-
sion (2.6) renders Bj,;(!) in terms of the simpler marginal densties of y({).

As training samples play a fundamental role in our testing H;,i = 1, ,¢q,
we will need the following definition.

Definition 2.1 A training sample y(I), will called proper if (2.4) holds and
mangmal if it is proper and none of its subsets is proper.
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Beger and Pericchi (1996b) advocated various summaries based on Bj;(1)’s in
(2.5) from many training samples to test H;, 1 =1, .-  g. Generically termed the
Intrinsic Bayes Factor (IBF) is given by the following definition.

Definition 2.2 The Arithmetic Intrinsic Bayes factor of H; to H, is

B“ BN 1ZB

—
|8
B |

—

where L is the number of all possible minimal training samples.

When the sample size is small, the training sample average in (2.7) can has
large variance (as statistics in frequentist sense), which indicates an instability of
IBF’s. Also, computation can be lengthy if L is large. As a way of overcoming
these problems, Berger and Pericchi (1996b) recommands replacing the average
in (2.7) by their expectation, evaluated at the MLE.

Definition 2.3 The Expected Arithmatic Intrinsic Bayes factor of H; to H;
is

BEAT = BY . 2S5 BB, (y (1)) (2.8)

where 8 is the MLE of 6 under H;

Next we use the another intrinsic Bayes factor, is called median intrinsic Bayes
factor. By Berger and Pericchi (1998), the median intrinsic Bayes factor seems to
be a simple and very generally applicable intrinsic Bayes factor, which works well
for nested or non-nested models, and even for small or moderate sample sizes.

Definition 2.4 The Median Intrinsic Bayes factor of H; to H; is
BM! = BY - MED|[B} (y(1))] (2.9)

where M E Dy indicates the median taken forall 1 <1 < L.
One can calculate the posterior probability of H; using (2.1), where Bj; is

replaced by Bﬁl, BEA[ and BMI from (2.7), (2.8) and (2.9), respectively.

3. Main Results
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The exponential model with parameter # for an homogeneous population is
given by

f(yl) = Bexp(~0y), (3.1)

where y > 0 and 6 > 0. A type II censored sample is one for which the » smallest
observations in a random sample of n items are observed. We are interested in
comparing two exponential lifetime data under type II censoring. We consider
two samples of sizes ny, ny from exponential populations with parameters 6.6,
respectively. Under type II censoring the observed data consist of the ordered
failure times yi; < yi2 < -+ < yy, and (n; — 1) survivors, where 7 = 1,2. We
want to test the hypotheses of Hy, : 8 = 6, vs. Hy : 6y # 6,. Epstein and
Tsao (1953) considered the LR test for H; vs. H, which is based on F(2r, 2r,)
distribution. Our interest is to develop a Bayesian test for H, vs. H, which is
an alternative to the classical LR test.

In subsection 3.1, we determine the minimal training sample (MTS), given
the data y3 = (y11,-°* +¥1r,) and y2 = (Y21, ", Y2r,). In subsection 3.2, we
derive expressions for the IBFs given by (2.7), (2.8) and (2.9) for MTS.

3.1 Minimal Training Sample

The goal here is to determine the set of all possible MTS's for the data y;
and yo2. To this end, we use Definition 2.1 and the Jeffrey’s priors TrZ-N (8),1=1.2
say, corresponding respectively to Hy : 6, = 6,(= 0), Hy : 8; # 0. The Jeffrey's
priors for H;, ¢ = 1,2 are respectively given by

1
and

TN (0y,0,) = —. (3.3)

We now derive the marginals with respect to the Jeffrey’s priors given by (3.2)

0 (3.3). For this end, we first observe that the joint pdf of (Y7,---,Y}) is given
by
n!
f(y,"'syr|0):-_" exp(— Zyt +(n=rjy)], 0 <y < <y (34)

(n—
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Moreover, the marginal pdf of Y}, 1 < k < r, is given by

n! 'O[exp(—ﬁyk)]"‘k“[l — exp(—&yk)]k_l. (3.5)

Hol®) = =i =y

Now, we introduce some notation for the marginals that we will use. For i —
1,2, let mi(yix, Yox) and m;(y1,y2) be the marginal densities of (Y, Y5/) and
(Y1,Y2) under the hypothesis H;, respectively. In the following lemma, we give
the marginal densities for any one observation in each sample.

Lemma 3.1 We have the marginal density m(yix, yor’) under H; and the
marginal density mq(y1k, yor’) under Hy as follows.

my (ylk» Z/2k')
k—1k'—1

n;! r
R ] nz_k,,ZZ + (3.6)

1=0 j=0

G0 :
i J Sl =k+i+ Dy + (ng — & +j + Dyaw]?

and

ma (Y1k, Yok')

TLI! n-z! it _
ROy D P B (3.7

(k ) <k’ - 1) 1 1
t 3 ) (m—k+i+ Dy (n2 =k +j+ Dyprr”
where 1 <k <r;and 1 <K' <ry.

The proof involves the Binomial Theorem, and details are deferred to the
Appendix. It is clear from Lemma 3.1 that the marginal density (Y, You) is
finite for all 1 < & < r; and 1 < &’ < ry under each hypothesis, and hence we
conclude that any training sample of size one is an MTS.

3.2 Intrinsic Bayes Factors

The marginal densities corresponding to the whole data (Y3, Y3) can also be
expressed in closed forms. We give these in the following lemma.

Lemma 3.2 For the whole data, we have the marginal density m1(y1,¥2)
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under Hj, and the marginal density mz(y1,y2) under H, as follows.

_ ny! ny!
Tn’l (YI7Y2) - (nl _ 7‘1)! (77,2 _ 7‘2)! (38)
] F(T‘l -Jr 7‘2)
(Uil v+ (= r)yee + 2500 vy + (2 = 1)y, ) P “
and
ny! Ty !
ma(y1,¥y2) = (3.9)

(ny — r1)! (ng — r2)!
. I'(ri)l(ra)
(S0, yri + (21— 7)) (272 Y5 + (2 = 72)y2r, )™

The proof is routine and is omitted. Now, we give the expressions for the
Bayes factors. In lines with the notation in Section 2, we let BN, (yrx (1)) and By
represent the Bayes factors computed using the MTS, Yik (1) = (Yik, y2ir) and
the whole data, respectively. Thus we get the following theorem from Lemmas
3.1 and 3.2.

Theorem 3.1 (i) The Bayes factor computed using the whole data is given
by

T(r)T(r2) (it v1i + (R0 = 1)yer )" (3521 y2; + (n2 = 72)Y2r,) "

By = = :
D7 Ty ) (0L v (n1 = r)yie, + 20580 Y2 + (02 — r2)yar, )Tt

(ii) The Bayes factor computed using the yi /(1) = (Y1k, Yorr) is givn by

z+' k-1 k'—1 1
Z Z g : ) J )[(nl_k+i+1)ylk+(n2_k/+j+1)y2k’]2

k! — 1 P11y (k/-1 1
Z Z — 1)+ ; )( 3 )("1—k+z'+l)(n'z—k’+j+l)y1kygk«

From the Theorem 3.1 the arithematic intrinsic Bayes factor Bﬂ-l is given by

B1z()’kk'(l)) =

ry
Byl = B - 17 Z Z B, (Vi ( (3.10)

k=1k'=1

Next for computing the expected arithmatic intrinsic Bayes factor, we need
to the following lemma.
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Lemma 3.3 The expectation of B12(Yk & (1)) is given by
g (Bl (via (1)]
016,
Site Lico GO T =kt i+ 1) (e — 4+ 1)

J

"‘ 1k’-1 lﬂ(k >(k’—l) ny! ny!
j (k — Dy — k)R = 1) (ny — kD!

Sz O
l 0 m= 0 m (glbjcl_02aidm)3

~[(01bJ(‘l + 02(1 dm) log(()lbjcl/ﬁgaidm) — 2(91bjcl — 02(1,'([,”)], (3.11)

where 0 = (61,62), a; = (n1 —k+1+1),b; = (ng —k'+j+1), ¢ = (ny—k+14+1)
and d,, = (ng — k' + m + 1).
The proof involves the Binomial Theorem and the tranformation technique

and is omitted. Thus we get the following theorem from Definition 3.3 and Lemma
3.3.

Theorem 3.2 The expected arithmatic intrinsic Bayes factor is given by

i T2

3> B ke ) (3.12)

k=1k’=1

EAl
B21 B21

where §; = ri/Wi, Wi =318 v+ (n1 —r1)y,, and 6y = ro /Wy, Wy = 232:1 yj+
(2 = 72)yp, -

From the Definition 3.4 and Theorem 3.1, we dervie the median Bayes factors
as follow:

B} = B} - MED|[B (v (1))]. (3.13)

4. Numerical Examples

Ezample 1 : For the hypotheses Hy : 8 = 0, vs. H, : 6 # 8y, we want
to compare the classical LR test with Bayesian test using noninformative priors
based on P-values and posterior probabilities of H;. To illustrate the difference
between the frequentist method and the Bayesian test procedure, we examine the
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cases when (8;,6,) = (1,1),(1,2),(1,3) and (ny,n2) = (10, 10), (10, 20), (20, 20)
with 20% and 10% censoring. The P-values are computed based on LR test

statistic using an F distribution with 2r; and 2r; degrees of freedom. The Bayes

factors and the posterior probabilities of H; being true are computed assuming

equal prior probabilities. The numerical values of P-value and Bayes factors for
testing Hy : 8; = 0 vs. Hy : 0; # 0, are given in Table 1.

101#02

Table 1: P-values and Bayes factors for testing H; : 8, = 6, vs. H;
(01’02) = (1* 1)
(ny,ng) (ri,re) | P-value B! BME BEA!
(10,10) {8,8) 0.6436  0.5733  0.5902  0.4902
(9,9) 0.6407  0.5751  0.5920  0.4821
(10,20)  (8,16) 0.8358 0.5324  0.5483  0.4509
(9,18) 0.7663  0.5429  0.5875  0.4496
(20,20) (16,16) | 0.9340  0.5237  0.5425  0.4429
(18,18) | 0.8425  0.5288  0.5418  0.4289
(61,82) = (1,2)
(n1,m2)  (ri,r2) | P-value B! BME BHA
(10,10) (8,8) 0.0723  1.3484 1.3154  1.5936
(9,9) 0.0593 1.5128  1.5326  1.7985
(10,20)  (8,16) 0.0659 1.2586  1.1133  1.6155
(9,18) 0.0413 1.7166  1.5307 2.1726
(20,20) (16,16) | 0.0448 1.6502 1.5203  2.2331
(18,18) | 0.0253  2.4455  2.2307  3.1861
(61, 62) = (1,3)
(ny,n2)  (ri,72) | P-value B;‘II B%E Bfl““
(10,10) (8,8) 0.0111  3.5943 2.7984  5.6998
(9,9) 0.0075 4.6380 3.6923  7.5585
(10,20)  (8,16) 0.0048 5.8585  3.7360 10.1238
(9,18) 0.0021 10.9359 6.86060 18.9017
(20,20) (16,16) | 0.0020 12.6557 9.0996 21.6959
(18,18) | 0.0007 28.0022 17.6593 48.3485

From Table 1, when (6;,602) = (1,2), the Bayes factors select H, properly,

but the P-value does not select H, for some cases. Actually for this case, as
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the sample sizes become larger, the P-values will select H,. The both P-values
and Bayes factors support H, for the case of (61, 62) = (1,1). Also they support

Hj for the case of (61,62) = (1,3). Thus the Bayes test procedure gives fairly
reasonable answers.

Ezample 2 : The following data, given by Proschan (1963), are time intervals
of successive failures of the air conditioning system in Boeing 720 jet airplanes.
We assume that the time between successive failures for each plane is independent
and exponentially distributed.

Three samples of sizes 24,16 and 15 are taken from Proschan (1963). The
ordered observations in each case are given below.

Plane 1 | 3,5,5,13,14,15,22,22,23,30,36,39,44,46,50,72,79,88,97,
102,139,188,197,210

Plane 2 | 14,14,27,32,34,54,57,59,61,66,67,102,134,152,209,230
Plane 3 | 12,21,26,27,29,29,48,57,59,70,74,153,326,386,502

In Tables 2 and 3, we provide the P-value, Bayes factors and posterior prob-
abilities for Hy : 8; = 8, vs. Hjy : 6; # 0, for the first data set (the plane 1
and the plane 2), and also for the second data set (the plane 1 and the pane 3).
P-values are computed based on F(:?/;Vf 321y, 2rg), where Wy = 3770y + (g —
P Yy Wo = 3002y + (n2 — 12)yr, (cf. Lawless(1982)).

For the first data set, there is no strong evidence for H, in terms of both
the P-value and the posterior probability. But for the second data set. there is a
disagreement between the P-value and Bayes factors. When we just look at the
statistics r;/W,; of each set of data, it seems that there is a strong evidence for
supporting H,. However, we can see that the particular observation 326 in plane
3 lessen the statistic ro/Ws, which makes the P-value large. Meanwhile, Bayes
factors give fairly reasonable answers.

It has been noticed that, more often than not, a P-value often does not agree
with the posterior probability that the null hypothesis is correct. Delampady and
Beger (1990) have showed that the lower bounds of Bayes factors and poterior
probabilities in favor of null hypotheses are much larger than the corresponding P-
values of the chi-squred goodness of fit test. Furthermore, P-values are computed
based on sufficent statistics, which might be misleading for some cases. The
arithmetic, expected and median intrinsic Bayes factors are computed based on
entire observations so that they give accurate interpretations and fairly steady

answers.
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Table 2: P—values7 Bayes factors and P(H,|y) for testing Hy : 6; = 63 vs.
: 6; # 6, based on the data for the planes 1 and 2
(ny, ng,r, re, r1/Wh,re/Wo)=(24, 16, 19, 13, 0.01599, 0. 01158)

P-value Byl  BHA BM  PAl(Hi|y) PEAI(Hly) PM(Hily)
0.3572  0.5339 0.6637 0.5339 0.6519 0.6010 0.6519

Table 3: P—values, Bayes factors and P(H,|y) for testing H, : 6; = 6, vs.
: 0; # 6, based on the data for the planes 1 and 3:
(ny,ng, ry,ro, v/ Wi, ro/Wy)=(24, 15, 21, 13, 0.01543, 0.008212)

Pvalue Bl BJAT BY  PA(H\ly) PPY(Hily) PY(Hly)
0.0670 1.8115 1.5136 1.8115 0.3557 0.3978 0.3557

5. Appendix

Proof of Lemma 3.1. First we derive the marginal density m (yix. yorr)
under H; using the Binomial Theorem.

(Y1, o) = /0 Fynl®) f (yare |0V (8)d8

> ny! na! ke
- Blexp( =0y )™ —F t
/0 (ky — )Mny — k) (k2 = )10y — k2)! [exp(=6y1x)]

’1 — 1o —~NK oy — ]-
x (1= exp(—8yix)]" " 8lexp(— By T2 [1 — exp(—byp)]2 7" 2 db

¢
ki—1ky—1

= RS b (7))

1=0 j5=0

X

/ 0 exp[—8(iyik + Jyar + (n1 — k1 + Dyie + (n2 — k2 + 1)yaw)]d8
0

k1 —1ko—1

’Ill! zj
(k= D)(ny — k) (kz = DY ng—kz'zz '

=0 y=0

ki — 1\ [ky—1 ) . .
X <1i )(zj )[(nl—k1‘+‘7'+1)y1k+(n2_k‘2+.1+1)9%']2
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Similarly we derive the margimal density my(yk, ypr) under H, as follows.

m2(91k7y2k’) :/ / f(ylkfol)f(yzk'lez)ﬂév(gl,92)(1916192

- /“‘/ (ky — 1)! nl—kﬂ u2—1)m2—kg

X Oy [exp(—8iyu)]™ k1+1[1—€\P( O1y1x)]* !

X 02[eXP(_92y2k')]n2—k2+1[1 ~ exp(—bayqx)] 2—1Wd91d32

102
!
- (k1 - 1) — k) (k2 - 1) (nz — k2)!
k] 1 oC
X Z ( )/ exp[—01{(ny — k1 + i+ 1)yix)]d6,
i=0 v
k2 1 k' _1 oG
X Z (2 )/ exp[—0y((n2 — ky 4 j + 1)yors))dby
=0 0
| ki—1ko—1
_ H—j
= DR e D X
1= J=
ki, —1 ky -1 i _ . -
8 ( li )( 2j >[(”1—k1+1+1)y1k] 1[('”2—k2+J+1)y2k1] !
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