블록식 보강토 옹벽의 내진설계에 관한 비교연구

Comparative Study on Seismic Design of Soil-Reinforced Segmental Retaining Walls

  • 유충식 (정회원, 성균관대학교 공과대학 토목공학과)
  • 발행 : 2000.08.01

초록

본 논문에서는 블록식 보강토 옹벽의 내진 설계/해석 개념을 고찰하고 현재 적용되고 있는 대표적인 설계기준이라고 할 수 있는 NCMA 및 FHWA 설계기준을 비교.분석하였다. 그 결과 NCMA와 FHWA 설계기준은 동일한 외적안정성 검토모형을 적용함에도 불구하고 지진계수 산정 기준의 차이로 인해 외적안정성 검토결과가 상이하게 나타나며, 전반적으로 FHWA 설계기준이 다소 보수적인 결과를 주는 것으로 나타났다. 한편, NCMA 설계기준에서 채택하고 있는 내적안정성 검토방법에 의하면 지진하중으로 인한 유발인장력의 증가 정도가 벽체 상단부로 갈수록 현저히 크게 나타나므로 상단부에서의 보강재 수를 증가시켜야할 뿐만 아니라 충분한 인발저항력 확보를 위해 정착길이를 증가시켜야 하나 FHWA 설계기준은 하단부 보강재에 동적하중을 재분배하는 모형을 채택하고 있으므로 NCMA 설계기준과는 상반된 결과를 도출하는 것으로 나타났다. 본 연구의 결과는 효율적인 설계기준의 개발을 위해 보다 종합적이고 체계적인 연구의 필요성을 제시하고 있다.

This paper reviews fundamentals of a pseudo-static seismic design/analysis method for soil-reinforced segmental retaining walls. A comparative study on NCMA and FHWA seismic design guidelines, which are one of the most well known design guidelines for mechanically stabilized earth walls, was also performed. The results demonstrate that there exist significant discrepancies in the results of external stability analysis despite the same calculation model used in the two guidelines, due primarily to different seismic coefficient selection criteria. It is also demonstrated that the internal stability calculation model for NCMA guideline tends to yield larger seismic reinforcement force in the shallower reinforcement layers, resulting in an increased number of reinforcement layers at the top of reinforced wall and increased reinforcement lengths to ensure adequate anchorage capacity. The internal stability calculation model adopted by FHWA guideline, however, leads to redistribution of dynamic force to the lower reinforcement layers and thus results n an opposite trend of NCMA guideline. Findings from this study clearly demonstrate a need for more in-depth studies to develop a generally acceptable design/analysis method.

키워드

참고문헌

  1. 1999년도 토목섬유 학술발표회 논문집 보강토 옹벽의 내진설계 유충식
  2. Geosynthetics International v.1 no.1 In-isolation cyclic load-extension behavior of two geogrids Bathurst, R. J.;Cai, Z.
  3. Proc. 10th Annual symp. of the Vancouver Geotechnical Society Seismic design and performance of geoshnthetic reinforced segmental retaining walls. Bathurst, R. J.;Cai, Z.;Pelletier, M. J.
  4. Geosynthetics International v.2 no.5 Pseudo-static seismic analysis of geosynthetic-reinforced segmental retaining walls Bathurst, R. J.;Cai, Z.
  5. Geosynthetics International v.5 no.1-25 Seismic Response Analysis of a Geosynthetic-Reinforced Soil Retaining Wall Bathurst, R. J.;Hatami, K.
  6. Proc. 6th Int. Conf. on Geosynthetics v.2 Influence of Reinforcement Stiffness, Length and Base Condition on Seismic Response of Geosynthetic Reinforced Retaining Walls Bathurst, R. J.;Hatami, K.
  7. Computers and Geotechnics v.17 no.4 Seisimic response analysis of geosynthetic reinforced soil segmental retaining walls by finite element method Cai, Z.;Bathurst, R. J.
  8. FHWA Demonstration Project 82 Mechanically stabilized earth walls and reinforced soil slopes design and construction guidelines Elias, V.;Christopher, B. R.
  9. Segmental Retaining Walls-Seismic Design Manual(First Edition) Bathurst, R. J.
  10. Proceedings Int. Geotech. Sym. on Theory and Practice of Earth Reinforcement Seismic design of reinforced earth retaining walls-the contribution of finite element analysis Segrestin, P.;Bastick, M.
  11. Geotechnical Fabrics Report, v.12 no.4 Retaining walls stand up the Northridge earthquake Sandri, D.
  12. ASCE Specially Conference on Lateral Stresses in the Ground and Earth Retaining Structures Design of earth retaining structures for dynamic loads Seed, H. B.;Whitman, R. V.