Application of Expanding-cell FDTD Method to Microstrip-to-Waveguide Transition

Expanding-cell 유한차분법의 마이크로스트립-도파관 변환기에의 적용

  • Published : 2000.04.01

Abstract

In this paper, we design and analyze a Ka-band microstrip line to rectangular waveguide transition using the expanding-cell FDTD method. The transition under investigation consists of a ridged waveguide, microstrip line, and $\lambda$/4 Chebyshev impedance transformer. To improve the accuracyand efficiency, the expanding-cell FDTD method is applied to analyze the characteristics of a ridged waveguide impedance transformer. To verify the accuracy of the expanding-cell FDTD method, S parameters of the analyzed transition are compared with those of experimental data. The efficiency of the present approach is verified by comparing the computational time for expanding-cell and that for fine cell. The relation between the number of step and operation bandwidth is analyzed by comparing the characteristics of four and three step Chebyshev waveguide impedance transformer.

본 논문에서는 Ka 대역 마이크로스트립 도파관 변환기를 설계하고, Expanding-cell 시간 영역 유한 차분법을 이용하여 변환기의 주파수 특성을 분석하였다. 마이크로스트립 도파관 변환기의 구조는 릿지(ridge)형 도파관, 마이크로스트립 라인, 그리고 $\lambda$/4 체비쉐프 도파관 임피던스 변환기로 이루어졌다 .. Expanding-cell 유한차분 방법을 마이크로스트립-도파관 변환기의 $\lambda$/4 체비쉐프 도파관 임피던스 변환기의 해석에 이용하여 계산의 정 확성과 효율성을 높였다. 계산 결과를 측정치와 비교하여 정확성을 입증하고, 균일한 크기의 미세 셀(fine cell) 과 성긴 셀(coarse cell)을 이용한 결과와 비교하여 효율성을 입증하였다 .. 4단과 3단 체비쉐프 도파관 임피던스 변환기의 주파수 특성을 비교하여 단의 수와 대역폭과의 관계를 분석하였다.

Keywords

References

  1. IEEE Trans. Microwave Theory Tech. v.42 Analysis and Design of Microstrip-to-Waveguide Transitions H. W. Yao
  2. IEEE Trans. Electromagnetic Compatibility v.34 An Expanding-Grid Algorithm for the Finite-Difference Time-Domain Method Ben-Qing
  3. IEEE Trans. Microwave Theory Tech. v.23 Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations A. Taflove;M. E. Brodwin
  4. IEEE Trans. Antennas and Propagation v.45 Three Dimensional Subgridding Algorithm for FDTD M. Okoniewski
  5. IEEE Trans. Microwave Theory Tech. v.38 A Local Mesh Refinement Algorithm for Time Domain-Finite Difference Method Using Maxwells Curl Equation I. S. Kim
  6. IEEE Trans. Microwave Theory Tech. v.46 FDTD Improvement by Dielectric Subgrid Resolution G. Marrocco
  7. IEEE Microwave and Guided Wave Letters v.2 A Method for Incorporating Different Sized Cells into the Finite-Difference Time-Domain Analysis Technique D. T. Prescott
  8. Microwave Filters, Impedance-Matching Networks, and Coupling Structures G. L. Matthaei
  9. Computational Physics v.114 A Perfectly Matched Layer for the Absorption of Electromagnetic Waves J. P. Berenger
  10. Microwave RF Ridge Waveguide Used in Microstrip Transition Sabbir S. Moochalia