Negative ion beam sputter 법으로 증착한 DLC 박막의 특성 (I)

Properties of Diamond-like Carbon(DLC) Thin Films deposited by Negative Ion Beam Sputter (I)

  • 김대연 (금오공과대학교 신소재시스템공학부) ;
  • 강계원 (금오공과대학교 신소재시스템공학부) ;
  • 최병호 (금오공과대학교 신소재시스템공학부)
  • Kim, Dae-Yeon (School of New Materials & System Engineering, Kumoh National University of Technology) ;
  • Gang, Gye-Won (School of New Materials & System Engineering, Kumoh National University of Technology) ;
  • Choe, Byeong-Ho (School of New Materials & System Engineering, Kumoh National University of Technology)
  • 발행 : 2000.07.01

초록

순수한 동적 결합반응이고 전하 누적이 없는 이온 임플란테이션, 새로운 재료 개발 등에 음이온을 직접 사용하는 새로운 연구가 진행되고 있으며, 이러한 관점에서 새로운 고체상의 Cs이온 법이 실험실 규모로 연구되고 있다. 본 논문에서는 음이온 Cs gun으로 DLC 박막을 실리콘 위에 제조하였다. 이 시스템은 가스가 필요없으므로, 고 진공에서 증착이 일어난다. C(sup)-빔 에너지는 80~150eV 사이에서 조절이 우수하였다. Raman 분석결과 박막의 DLC 지수, 즉$sp^3$비율은 이온 에너지 증가에 따라 증가하였으며, 미소 경도값 또한 7에서 14GPa로 증가하였다. DLC박막의 표면 평균거칠기(Ra)는 ~1$\AA$정도로 아주 매끈하였으며, 불순물이 내재되지 않는 박막을 얻을 수 있었다.

Direct use of negative ions for modification of materials has opened new research such as charging-free ion implantation and new materials syntheses by pure kinetic bonding reactions. For these purposes, a new solid-state ce-sium ion source has been developed in the laboratory scale. In this paper, diamond like carbon(DLC) films were prepared on silicon wafer by a negative cesium ion gun. This system does not need any gas in the chamber; deposition occurs under high vacuum. The ion source has good control of the C- beam energy(from 80 to 150eV). The result of Raman spectrophotometer shows that the degree of diamond-like character in the films, $sp^3$ fraction, increased as ion beam energy increases. The nanoindentation hardness of the films also increases from 7 to 14 GPa as a function of beam energy. DLC films showed ultra-smooth surface(Ra~1$\AA$)and an impurity-free quality.

키워드

참고문헌

  1. J. Appl. Phys. v.59 J. Wagner;P. Lautenschlager
  2. J. Appl. Phys. v.61 S. Prawer;R. Kalish;M. Adel;V. Richter
  3. J. Vac. Sci. Technol v.A16 no.6 M. H. Sohn;Y. O. Ahn;Y. W. Ko;S. R. Han;T. E. Fischer
  4. Appl. Phys. v.37 Structural, Optical, and Field Emission Properties of Hydrogenated Amorphous Carbon Films Grown by Helical Resonator Plasma Enhanced Chemical Vapor Deposition Jae Yeob Shim;Eung Joon CHi;Hong Koo Baik;Sung Man Lee
  5. Thin Solid Films v.315 The strengthening mechanism of DLC film on silicon by MPECVD S.L. Sung;X.L. Guo;K.P. Huang;F.R. Chen;H.C. Shin
  6. J. Electronic Materials v.27 no.1 S.F. Yoon;H. Yang;Rusli;J. Ahn;G. Zhang
  7. J. Non-Crystalline Solids v.254 M.K. Fung;W.C. Chan;K.H. Lai;I. Bello;C. S. Lee;N.B. Wong;S.T. Lee
  8. Surface and Coating Technol. v.85 H. J. Scheibe;D. Drescher;B. Schultrich;M. Falz;G. Leonhardt;R. Wilberg
  9. J. Electro. Mater. v.25 no.1 R. D. Vispute;J. Narayan;K. Jagannadham
  10. Appl. Phys. Lett. v.68 no.9 E. Grossman;G. D. Lempert
  11. J. Vac. Sci. Technol. v.A3 no.2 Yoshikatsu Namba;Toshio Mori
  12. Rev. Sci. Instrum. v.63 no.4 Junzo Ishikawa
  13. Rev. Sci. Instrum. v.67 no.3 Junzo Ishikawa
  14. Thin Solid Films v.317 L. Nobili;P. L. Cavallotti;G. Coccia Lecis;G. De Ponti;C. Lonardi
  15. Proc. of the twelfth conf. on mechanical behaviors of materials 한준희;허용학;윤경진;이광렬;심성민
  16. 한국재료학회지 v.7 no.1 김성영;이재성
  17. Surface and Coating Technology v.123 S. Zhang;X. T. Zeng;H. Xie;P. Hing
  18. J. Appl. Phys. v.84 no.10 Qing Zhang;S. F. Yoon;Rusli;J. Ahn;H. Yang
  19. Surface and Coatings Tech. v.96 P. Hollman;P. Hedenqvist;S. Hogmark;G. Stenberg;M. Boman