파랑존재시 해저 모래결위의 부유사 농도분포

Suspended Sediment Concentrations over Ripples for Waves

  • 김효섭 (국민대학교 공과대학 토목·환경공학부) ;
  • 김태형 (국민대학교 대학원 토목공학과)
  • Kim, Hyo-Seop (School of Civil & Environmental Engineering Kookmin University) ;
  • Kim, Tae-Hyeong (Department of Civil & Environmental Engineering Kookmin)
  • 발행 : 2000.04.01

초록

본 논문에서는 파랑이 존재할 때 모래결위에서의 흐름과 부유사의 거동에 관하여 기술한다. 새로운 수치모형시스템을 구축하였으며 이를 규칙파랑을 이용한 기존 실험실 실험조건과 가상적불규칙파랑조건에 적용하였다. 흐름장 계산은 SMAC 방법에 근거한 프로그램 SOLA를 Kim 등(1994)이 일부 수정하여 제시한 프로그램을 사용하였다. 흐름계산 부모형은 x-z 면에서의 연속방정식과 Reynolds의 운동방정식을 기본방정식으로 한다. 흐름부모형으로 파랑궤적도, 전단응력, 압력의 분포를 계산하였다. 모형실험결과 중 수직방향궤적도는 관측자료와 잘 일치하였다. 퇴적물이동 부모형은 부유사의 이류확산을 나타내는 식을 기본방정식으로 한다. 수치기법은 분리기법을 이용하며, 모래결 표면으로부터 퇴적물이 연행되어 유체내로 투입된다. 규칙파랑 실험조건에 수치모형을 적용한 결과, 부유사농도의 연직분포가 Deltaflume의 실험자료와 유사하게 재현되었다. 가상적인 불규칙 파랑조건에 모형을 적용한 결과 부유사농도의 높게, 부유사확산 범위가 더 넓게 예측되었다.

This paper presents the flow and the suspended sediment movement over ripples for oscillatory flows. A new numerical model system is developed, and applied to a laboratory experimental condition of regular waves and a fictitious condition of irregular waves. The flow field is obtained from a programme proposed by Kim et. al.(1994), which is a modified version of SOLA based on SMAC scheme. The sub-model solves the continuity and Reynolds momentum equations in the x-z plane. The wave orbital velocities, shear stresses, and pressure are all reasonably reproduced by the model. The model results on the vertical velocity component show good agreement with the measurements. The suspended sediment transport sub-model is newly set up to solve the advection-diffusion equation of suspended sediment using a split method, and involving a special shear entrainment from the whole ripple surface. The calculated suspended sediment concentrations for regular waves show reasonable agreement with measurements at Deltaflume. The model results for random waves show that the suspended sediment concentration is higher than those for regular waves and that the sediment diffuses higher than for regular waves with the significant wave height and the peak wave period of the irregular waves.

키워드

참고문헌

  1. Amsden, AA and Harlow, F.H. (1970). The SMAC method, Los Alamos Scientific Laboratory, Report LA-4370
  2. Bagnold, R.A (1946). 'Motion of waves m shallow water. Interaction between waves and sand bottoms.' Proc. Roy. Soc. A187, pp. 1-15
  3. Blondeaux, P. and Vittori, G. (1990). 'Oscillatory flow and sediment motion over a rippled bed.' International Conference on Coastal Engineering, ASCE, pp. 2186-2199
  4. Bosman, J.J. (1982). Concentration measurements under oscillatory motion. DH Report M 1695, Part II
  5. Du Toit, C.G. and Sleath, J.F.A. (1980). 'Velocity measurement close to rippled beds In oscillatory flow. Journal of Fluid Mechanics.' Vol. 112, pp. 71-96 https://doi.org/10.1017/S002211208100030X
  6. Hansen, E.A., Fredsoc, J. and Deigaard, R. (1991). Distribution of suspended sediment over wave generated ripples. International Symposium on the Transport of Suspended Sediments and its Mathematical Modelling, Florence, Italy, pp. 111-128
  7. Huynh-Thanh, S. and Temperville, A. (1990). 'A numerical model of the rough turbulent boundary layer in combined wave and current interaction.' International Conference on Coastal Engineering, ASCE. pp. 853 -866
  8. Kim, Hyoseob., B.A. O'Connor, Y. Shim. (1994). 'Numerical modelling of flow over ripples using SOLA method.' 24th International Conference on Coastal Engineering. ASCE, pp. 2140-2154
  9. Kim, Hyoseob, (1993). Three dimensional sediment transport model. PhD. Thesis, University of Liverpool, Liverpool, UK
  10. Longuet-Higgins, M.S. (1981). 'Oscillating flow over steep sand ripples.' Journal It Fluid Mechanics, Vol. 107. pp. 1-35 https://doi.org/10.1017/S0022112081001651
  11. MacPherson, B. (1984). Flow and sediment transport over steep sand ripples. Ph.D. Thesis, The University of Cambridge, UK
  12. Nielsen, P. (1992). Coastal bottom boundary layers and sediment transport. World Scientific
  13. O'Connor, B.A., Harris, J., Kim, H., Wong, Y.K., Oebius, H.U., and Williams, J.J. (1992). 'Bed boundary layers.' International Conference on Coastal Engineering, ASCE, pp, 2307 2320
  14. O'Connor. B.A. (1998). Inlet Dynamics Initiative; Algarve(INDIA), University of Liverpool. End of Year(12 Monthly) Report
  15. Sato, S. (1987). Oscillatory boundary layer flow and sand movement over ripples. Ph.D. Thesis, The University of Tokyo, Japan
  16. Tsujimoto, G., Hayakawa, N., Ichiyama, M., Fukushima, Y. and Nakamura, Y. (1991). 'A study on suspended sediment concentration and sediment transport mechanism over rippled sand bed using a turbulence model.' Coastal Engineering Japan, Vol. 34, No.2, pp. 177-189
  17. Van Rijn, L.C. (1989). Handbook sediment transfort by currents and waves. Report H 461, Delft Hydraulics
  18. Welch, J.E., Harlow, F.H., Shannon, J.P. and Daly, B.J. (1966). The MAC method, Los Alamos Scientific Laboratory, Report LA-3425
  19. Williams, J.J., Bell, P.S., Coates, L.E., Hardcastle, P.J., Humphery. J.D., Moores, S.P., Thome, P.D., Trouw, K. (1998). Evaluation of field equipment used studies qf sediment dynamics, Proudman Oceanographic Laboratory, Report 53