농촌 유역 상단부의 소하천에서 수질예측모형의 개발

Development of a Water Quality Model for Streams in an Upland Agricultural Watershed

  • 발행 : 2000.02.01

초록

농촌 소하천의 수리학적 및 수질특성을 반영한 모형을 개발하였다. 모형구조 설계시 제어체적 기법을 활용하여 하천 형상, 수질 및 유량의 변화가 심한 농촌 유역의 소하천에 대한 수질의 모의하였다. 개발한 모형에 난수발생기법을 도입하여 최적 반응계수와 모형구조를 추정하였다. 또한 모형 보정기준의 일반화를 위해 동의지표와 효율계수를 도입하여 매개변수추정의 신뢰성 향상을 도모했다. 모형의 적용성을 검증하기 위해 경남 김해시 한림면 용덕천에서 수질을 채취하여 분석하였다. 관측된 자료와 개발된 모형의 비교연구를 통해 대상유역의 소하천에서 일어나는 수질 반응계수들과 그 변동성을 추정하였다.

A water quality model was developed for small stream at a upland agricultural watershed. A control volume method was employed to digest the severe variability of stream shape, water quality and discharge at small streams. We estimated optimum reaction coefficients and model structure using a random number generation technique. The index of agreement and coefficient of efficiency were introduced for the model calibration criterion. As the result, the reliability of model parameter estimation could be improved. The applicability of model was tested by a set of sampling results at Yongduckchun in Kimhae. The variability of water quality reaction coefficient was explored through the observed data and using the developed model. model.

키워드

참고문헌

  1. 류재근, 신동석, 양형재, 박제철, 권경수 (1998). 낙동강 중장기 오염부하량 저감대책-모델 검증 및 보완방안, 수질연구부 보고서,국립환경연구원
  2. 박석순 (1997). '하천 수질 모델의 원리와 활용 방법.' 수질모델 Workshop 교재, 한국수자원 공사 수자원 연구소, pp. 33-49
  3. Ang, A.H-S., and Tang, W.H. (1975). Probability concepts in engineering planning and design. John Wiley & Sons, Inc.
  4. Bicknell, B.R., Imhoff, J.C., Kittle, J.L., Donigian, A.S., and Johanson, R.C. (1993). Hydrologic Simulation Program-FORTRAN (HSPF) : Users manual for release 10 EPA/600/R-93/174, U.S. Environmental Protection Agency, Athens, GA
  5. Brown, L.C., and Barnwell, T.O. (1987). The enhanced stream water quality models QUA12E and QUA12E-UNCAS : Documentation and user manual. EPA/600/ 3-87/007, U.S. Environmental Protection Agency, Athens, GA
  6. Hogg, R.V., and Tanis, E.A. (1993). Probability and statistical inference. Macmillan Pub., Inc.
  7. Legates, D.R., and McCabe, Jr. G.J. (1999). 'Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation.' Weter Resources Research, Vol. 35, No. 1, pp. 233-241 https://doi.org/10.1029/1998WR900018
  8. Munson, B.R., Young, D.F., and Okiishi, T.H. (1996). Fundamentals of fluid mechanics. John Wiley & Sons, Inc.
  9. Nash, J.E., and Sutcliffe, J.V. (1970). 'River flow forecasting through conceptual models, I, A discussion of principles. ' Journal of Hydrology, Vol. 10, pp. 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  10. Park, S.S., and Lee, Y. S. (1996). 'A multiconstituent moving segment model for the water quality prediction in steep and shallow streams.' Ecological Modelling, Vol. 89, pp. 121-131 https://doi.org/10.1016/0304-3800(95)00126-3
  11. Thomann, R.V., and Mueller, J.A. (1987). Principles of surface water quality modeling and control. Haper Collins
  12. Streeter, H.W., and Phelps, E.B. (1925). A study of the pollution and natural purification of the Ohio River, III, factors concerned in the phenomena of oxidation and reaeration, U.S. Pub. Health Serv., Pub. Health Bulletion NO. 146
  13. William, H.P. (1992). Numerical recipes in FORTRAN 2nd edition. Cambridge University Press
  14. Willmott C.J., Ackleson, S.G., Davis, R.E., Feddema, J.J., Klink, K.M., Legates, D.R., O'Donnell, J. and Rowe, C.M. (1985). Statistics for the evaluation and comparison of models, J. of Geophysical Research, Vol. 90, NO. C5, pages 8995-9005, Sep. 20