Rheological Properties of Spinning Solution of Lyocell Fiber-Effect of Hydrated Level of N-Methylmorpholine N-oxide-

Lyocell 섬유 방사용액계의 유변학적 특성-N-Methylmorpholine N-oxide의 물함량의 영향-

  • 김동복 (한양대학교 응용화학공학부) ;
  • 이화섭 (한국과학기술연구원 고분자하이브리드 센터) ;
  • 이영무 (한양대학교 응용화학공학부) ;
  • 김병철 (한양대학교 응용화학공학부)
  • Published : 2000.12.01

Abstract

The hydration level of NMMO hydrates determines their solvating power to cellulose and it has a significant effect on the rheological properties of the cellulose solutions in the hydrates. NMMO hydrate with water content of 14.5 wt.% could not completely dissolve cellulose, resulting in a heterogeneous solution. the cellulose solution in NMMO hydrate with water content of 9.6 wt.% produced a mesophase. In case of $DP_{w}$ 940 cellulose solution, lower Newtonian flow region was not observed. In case of 12 and 15 wt.% $DP_{w}$ 940 cellulose solutions in NMMO hydrate with water content of 9.6 wt.%, yield behavior was observed. The yield stress of the 15 wt.% $DP_{w}$ 940 cellulose solution in NMMO hydrates with water content of 9.6 wt.% was calculated to e 6.96 Pa. Further, the orientation structure of cellulose solutions became more noticed with decreasing hydration levels of the solvent.

Keywords

References

  1. Brit. Pat. 8,700 C.F. Cross;E.J. Bevan;C. Beadle
  2. Text. Res. J. v.59 no.9 A.S. Chegolya;D.D. Grunsphan;E.Z. Burd
  3. U.S. Pat., 2,179,181 G. Graenecher;R. Sallmann
  4. U.S. Pat., 4,246,221 C.C. McCorsley
  5. Lenzinger Berichte v.69 D. Cole;A. Jones
  6. Textile Horizones S. Daves
  7. J. Korean Fiber Soc v.29 no.6 S.W. Chun;W.S. Lee;S.M. Jo;J.D. Kim
  8. J. Polym. Sci. Polym. Phy. Ed. v.20 H. Chanzy;S. Nawrot;A. Peguy;P. Smith
  9. Acta Crystallogr v.B39 E. Maia;S. Perez
  10. J. Polym. Sci. Polym. Phy. Ed. v.18 H. Chanzy;A. Peguy;S. Chaunis;P. Monzie
  11. ACS-Las Veras. PMSE Prepr. v.77 B.C. Kim;W.S. Lee;S.M. Jo;C.S. Park;D.B. Kim;Y.M. Lee
  12. J. Polym. Sci. Polym. Phy. Ed. v.19 D.L. Patel;R.D. Gilbert
  13. Polym. J. D.B. Kim;W.S. Lee;S.M. Jo;Y.M. Lee;B.C. Kim
  14. U.S. Pat., 4,211,574 C.C. McCorsley Ⅲ;J.K. Varga
  15. U.S. Pat., 4,142,913 C.C. McCorsley Ⅲ;J.K. Varga
  16. U.S. Pat., 4,144,080 C.C. McCorsley Ⅲ
  17. Angew. Chem. v.48 K. Fischer
  18. U.S. Pat., 5,584,919 W.S. Lee;S.M. Jo;H.J. Kang;D.B. Kim;C.S. Park
  19. Makromol. Chem. v.16 M. Marx
  20. J. Kang. Polymer(Korea) v.22 no.5 D.B. Kim;W.S. Lee;H.J. Kang
  21. U.S. Pat., 4,196,282 N.E. Fanks;J.K. Varga
  22. Chem. Technol v.11 A.E. Turbak;R.B. Hammer;R.E. Davies;H.L. Hergert
  23. The Korea J. Rheol v.10 no.1 W.S. Lee;S.M. Jo;D.B. Kim;Y.M. Lee;B.C. Kim
  24. Current Topics in Polymer Science v.Ⅱ R.M. Ottenbrite;L.R. Utracki;S. Inoue
  25. J. Polym. Sci. Polym. Phy. Ed. v.20 K.F. Wissbrun;A.C. Griffin
  26. Polym. Eng. Reviews v.1 S. Onogi;T. Matsumoto
  27. Polym. Eng. Reviews. v.3 T. Amari;K. Watanabe
  28. Brit. Polym. J. v.12 K.F. Wissburn
  29. Rheol Acta v.23 R.C. Warren
  30. Polym. Eng. Sci. v.22 no.9 C.H. Kao;D.G. Baird
  31. Int. Polym. Proc. v.4 no.3 T.S. Park;K.U. Kim