Characterization of Polyphosphate Kinase Gene in Serratia marcescens

Serratia marcescens의 Polyphosphate Kinase 유전자 특성

  • Yang Lark Choi (Division of Biotechnology, Faculty of Natural Resources and Life Science Dong-A University) ;
  • Seung Jin Lee (Division of Biotechnology, Faculty of Natural Resources and Life Science Dong-A University) ;
  • Ok Ryul Song (Division of Biotechnology, Faculty of Natural Resources and Life Science Dong-A University) ;
  • Soo Yeol Chung (Dept. of Food Science, Dongju College, Pusan) ;
  • Young Choon Lee (Division of Biotechnology, Faculty of Natural Resources and Life Science Dong-A University)
  • Published : 2000.08.01

Abstract

Polyphosphate kinase catalyzes the formation of polyphosphate from ATP. To understand the mechanism of phosphate accumulation, the Serratia marcescens gene encoding ppk was cloned from the genomic library by the method of Southern hybridization. The hybridization positive DNA fragment region from pDH3 was subcloned into the expression vector. The ppk gene product, a polypeptide of 75 kDa, was confirmed by SDS-PAGE. Expression of the Serratia marcescens ppk is regulated by the catabolite repression system. The enzyme activity polyphosphate kinase was increased in the E. coli strain harboring plasmid pMH4 with ppk gene.

본 연구는 인산 축적능이 뛰어난 균주를 분자 육종하여 생물학적 폐수처리 및 토양의 인산 집적을 해결시키는 산업적 유용한 재료로 이용하기 위한 기초연구를 목표로 하고 있다. Polyphosphate kinase의 ATP의 phosphate를 단리하여 한분자씩 결합시키는 형태로 polyphosphate의 합성반응을 촉매한다. 인산 축적에 관한 대사과정의 분자적 이해를 위하여 Serratia marcescens균주로부터 Southern hybridization방법으로 ppk를 암호하는 유전자를 찾아내어 새조합시킨 pDH3를 구축하였다. pDH3으로부터 ppk를 암호하는 유전자 영역의 4.0 kb 단편을 가진 subclone을 작성하였다.Serratia marcescens의 polyphosphate kinase의 활성은 catabolite repression에 의한 조절을 받았다. 발현멕타에 삽입시킨 재조합 플라스미드를 대장균에 도입시킨 결과, polyphosphate kinase의 효소활성이 크게 증가됨을 확인 하였다. 또한 대량 발현시킨 결과를 SDS-PAGE를 통하여 75 KDa의 발현산물을 확인할 수 있었다.

Keywords

References

  1. J. Biol. Chem. v.265 Polyphosphate kinase from Escherichia coli. Ahn, K.
  2. J. Biol. Chem. v.267 The polyphosphate kinase gene of Escherchia coli. AKiyama, M.;Crooke, E.;Karnberg, A.
  3. J. Biol. Chem. v.268 no.1 An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon. AKiyama, M.;Crooke, E.;Karnberg, A.
  4. Appl. Environ. Microbiol. v.65 Cloning and characterization of polyphosphate kinase and exopolyphosphatase genes from Pseudomonas aeruginosa 8830. Ara, Z.;C. Sudha;A. M. Chakrabarly
  5. Anal. Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Barford, M. M.
  6. Nucleic Acid Res. v.7 A rapid alkaline extraction procedure for screening recombinant plamid DNA. Birnbaum, H. C.;Doly. J.
  7. Science v.224 Activation of transcription by the cyclic AMP receptor protein. De Crombrugghe, B.;Bushy, S.;Bus, H.
  8. FEMS Microbiol. Lett. v.60 Cloning of the 52-kDa chitinase gene from Serratia marcescens KCTC 2172 and its proteolyic cleavage into an active 35-kDa enzyme. Gal. S. W.;Choi, Y.J.;Kim, C. Y.;Cheong,Y. H.;Choi,Y. J.;Bahk, J. D.;Cho, M. J.
  9. Appl. Environ. Microbiol. v.64 Tran scription of ppk from Acinetobacter sp. strain ADP1, encoding a putative polyphosphate kinase, is induced by phosphate starvation. Geiofer, W.;Ratajczak,A.;Hillen, W.
  10. Science. v.171 Phosphate replacement: problems with washday miracles. Hammond, A. E.
  11. J. Bacteriol. v.173 Dual regulation of the ugp operon by phosphate and carbon starvation at two interspaced promotors. Kasahara, M.;Makino, K.;Amemura, M.;Nakata, A.;Shinagawa, H.
  12. Gene. v.137 Cloning, sequence and characterization of the polyphosphate kinase-encoding gene(ppk) of Klebsiella aerogenes. Kato, J;Yamamoto,T. Yamada;Yamada, K.;Ohtake, H.
  13. Appl. Environ. Microbiol. v.62 Genetic manipulations of polyphosphate metabolism affect cadmium tolerance in E. coli. Keasling, J. D.;G. A. Hupf
  14. J. Bacteriol. v.177 Inorganic polyphosphosphate: toward making a forgotten polymer unforgettable. Kornberg, A.
  15. Adv. Microb. Physiol. v.24 Polyphosphate metabolism in microorganism. Kuleav, I. S.;V. M. Vagabov
  16. Proc. Natl. Acad. Sci. USA v.93 Phosphohistidyl active sites in polyphosphate kinase of Escherichia coli. Kumble, K. D.;K. Ahn;A. Kornberg
  17. Nature. v.227 Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Laemmli, U. K.
  18. Water Res. v.19 Uptake and relase of phosphate by a pure of Acinetobacter calcoaceticus. Ohtake, H.;K. Takashi;Y. Tsuzuki,K. Tada
  19. Resurces Conservation and Recyling. v.18 Bacterial phosphonate degradation, phosphate oxidation and polyphosphate accumlation. Ohtake, H.;K. Wu;K. Imazu;Y. Anbe;J. Kabe;A. Kuroda
  20. Methods Enzymol. v.1 Acetate kinase of bacteria(acetokinase). Rose, I. A.
  21. Cold Spring Harbor Laboratory Molecular Cloning: a laboratory manual. Sambrook, J.;Fritsch. E. F.;Maniatis. T.
  22. J. Mol. Biol. v.98 Detection of specific sequences among DNA fragments separated by gel electrophoresis. Southern, E. M.
  23. Annu. Rev. Biochem. v.57 Biological aspects of inorganic polyphosphates. Wood, H. G.;J. E. Clark
  24. Kor. J. Life Science. v.8 Analysis and cloning of cAMP receptor protein gene in Serratia marcescens. Yoo, J. S.;Kim, H. S.;Moon,J. W.;Chung, S. Y.;Choi, Y. L.