퍼지 엔트로피를 이용한 퍼지 뉴럴 시스템 모델링

Fuzzy Neural System Modeling using Fuzzy Entropy

  • 박인규 (정회원, 중부대학교 정보공학부 전자계산과)
  • 발행 : 2000.04.01

초록

이 논문에서는 시계열 예측을 위하여 퍼지 엔트로피에 의한 입력공간의 분할과 퍼지 제어규칙을 자동으로 생성하는 방법을 제안하고, Mackey-Glass 데이터 Set을 이용한 시계열 예측 문제에 적용하여 그 성능을 검증한다. 이 방법은 샤논 함수와 퍼지 엔트로피 함수를 이용하여 입력공간을 분할하고, 분할된 부 공간에 대해 이력 데이터와 부합할 수 있는 각각의 규칙에 등급을 정하여 불필요한 제어규칙을 제거하여 최적의 규칙베이스를 구성하도록 한다. 적용되는 퍼지 신경망의 기본적인 구조는 퍼지 제어기의 규칙베이스와 추론의 과정을 신경회로망을 이용하여 구현하며 퍼지 제어규칙의 매개변수들은 최대 급경사 강하법에 의해 적응되어진다. 제안되는 알고리즘을 매개변수의 수를 줄이기 위하여 제어 규칙의 결론부의 출력값은 신경망의 가중치로 구성하여 퍼지 신경망의 복잡도를 줄임으로서 추론형과 기술형 접근법을 혼합한 형태의 학습 알고리즘이다.

In this paper We describe an algorithm which is devised for 4he partition o# the input space and the generation of fuzzy rules by the fuzzy entropy and tested with the time series prediction problem using Mackey-Glass chaotic time series. This method divides the input space into several fuzzy regions and assigns a degree of each of the generated rules for the partitioned subspaces from the given data using the Shannon function and fuzzy entropy function generating the optimal knowledge base without the irrelevant rules. In this scheme the basic idea of the fuzzy neural network is to realize the fuzzy rules base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by the steepest descent algorithm. The Proposed algorithm has been naturally derived by means of the synergistic combination of the approximative approach and the descriptive approach. Each output of the rule's consequences has expressed with its connection weights in order to minimize the system parameters and reduce its complexities.

키워드