RE TR
H20% HIAER
2000% 9R 1

Linear Programming Model Discovery from Databases
Using GPS and Artificial Neural Networks

0-Byung Kwon* - Jin-Seocl Yang**

A Abstract ®

The linear programming model is a spectal form of useful knowledde that 1s embedded in a database. Since
formulatng medals from scratch requires knowledge-intensive efforts, knowledge-based formulation support
systens have been proposed in the Decision Support Systems area. However, they rely on the assumption that
sufficient domain knowledde should already be capiured as a specific knowledge representation form. Hence, the
purpose of this paper is to propose a methodology that finds useful knowledge on building linear programming -
models from a database The methodology conslsts of two parts. The first part is to find s first-cut model
hased on a data dictionary. To do so, we applied the Ganeral Problem Solver (GPS) algorithm, The second part
15 to discover a second-cut model by applying neural neiwork technigue An illustrative example is described to
show the feasibility of the proposed methadology.

1. Introduction The formulation efforts include selecting decision
variables and other coefficients, and finding func-

Linear programming model formulation from tional and linear dependencies among them. In
scratch requires knowledge-intensive efforls, order to acquire optimal solution, the formulation

School of Management and Economics, Handong University
++ Samsung Life Insurance Co. LTD.

results are often represented as a Structured

Modeling schema, which 15 well known in the
Decision Support Systemn (DSS) research area
[14]. The Structured Medeling schema is com-
posed of the elements and thewr calling sequences.
The element types are primitive and compound
entities, attributes, variahle attributes, functions,
and tests. Hence. formulating Structured Mod-
eling Language {(SML} schema models from data-
basesis equivalent to finding elements from data-
bases and then enumeraring them according to
the SML gyntax. Finding functions and tests are
more difficult because they must be defined after
discovering numerical and functional depen-
dencies among cther atiributes, For example, in
arder to Tormulate a test element T:DEM such
that “T : DEM (FLOW, DEM) /t/; @IANDj
(@SUM (FLOWij) = DEM;).”, the numerical re-
lationships between FLOW and DEM must be
found, via data mining or knowledge discovery
from databases(KDD) [17-201.

Data mining is the exploration and analysis,
by automatic or semiautomatic means, of large
quantities of data m order to discover mean—
ingful paiterns and tules(4]. Knowledge dis-
covery, on the other hand, refers to the overall
process of discovening useful knowledge from
data. Frawley et al delined knowledge dis-
covery as the non-trivial process of identifying
valid, novel, potentially useful and ultimately
understandable patterns in data[13]. Standard
statistical method., market basket analysis,
memory-based reasomng, geneiic algorithms,
cluster detection, link analysis, decisicn trees,
and artificial neural networks have been pop-
ularly used for data mining. Among them, ar-
tificial nenral networks approach (o data mining
or knowledge discoverv 15 well suited for esti-
mation and prediclion knowledge from databases.

Finding complex relationships among database
fields remains as a research challenge [12]. Since
linear programmng models are applicable to this
case, depending on conventional knowledge dis-
covery techrniques 18 not eflficient. For example,
a linear programmung model consists of a set of
altributes amd decision variables that are grouped
by a corresponding index function. The attributes
are also inter—related to one another in the context
of formmg modules as complex relationships,
including objective [unctions and constraints
Formulating linear programmmg models is deeply
related to data sets and corresponding data dic—
Honary. Hence, it 1s necessary to develop algo-
rithms that effectively utilize such information.
These give cur motivation behind building a
methodology (hat efficiently extracts linear pro-
gramming models from databases without do-
main-specific formulation knowledge.

In this paper, we will propose a two-phased
linear programiming model discovery method. The
first phase is to find exhaustively well-formed
modules from a data dicticnary by applying the
General Prablem Sclver (GPS) algorithm. We will
call it the first-cut model discovery. The second
phase is to vahdate models among well-[ormed
modules, which is called the second-cut model
discovery. The back propagalion method, one of
the Artificial Neural Network methods, is adopted
as a model validation tool.

The remainder of this paper is organized as
follows : In Chapler 2, a literature survey on
model management and formulation support
systems is described briefly. Overall framework
for the linear programming model discovery 1s
illustrated in Chapter 3. The [(irst part, the
first-cut model discovery from data dictionary,
is delineated in Chapter 4. The Chapter 5 shows
the second-cui model discovery by applying
Artificial Neural Networls system. In Chapter 6,

an illustrative example is given in order to show

the feasibility of the proposed methodology.
Finally, concluding remarks and {uture research
1ssues are presenled in Chapter 7.

2. Model Formulation Sup-
port Systems

Model formulation is a process of creating
models that are efficiently solvable by some mat-
hematical programming solution methad (33). The
prevailing approaches to formulating mathemati-
cal programming models involve specific mod-
eling languages and domain knowledge repre-
sentations. Block-link approach is proposed to
support the formulation procedures intelligently
[29], and the interface design for software
systems, LPFORM, in graphical forms is de-
scribed [27]. PM", a logic—based medeling lan-
guage, is used o divide knowledge into domain
specific knowledge in logic forms, Procedural
modeling knowledge then treats the domam
specific knowledge as an instance of modeling
knowledge [5, 6]. A prototype systermn in IMMPS
project to support formulation, discourse, and
analysis support is propesed [15). Case-hased
reasoning techniques were also applied to model
formulation supperts [25, 26, 32]. A control black-
board approach 1o the simulation of control
features observed in the expert's model for-
mulation protocols are proposed[31]. In addition,
a varety of expeart system technologies are pro-
posed as knowledge-hased model formulation
systemns [21, 24]. Finally, an object-ariented ap-
proach 1o model formulation is pursued since it
is well suited for the representation and imple-
mentation ol reusable modeling constructs in a
large scale decision support systems [3, 22].

3. Overall Framework

An overall structure of the two-phase model
formulation from data model is shown in [Figure
1]. The knowledge of madel formulation is divid-
ed into three phases * (1) first-cut model discov-
ery from data dictionary, (2) second-cut model
discovery and (3) model instance generation. Data
dictionary embeds the information regarding
modeling constructs. Most of the domain knowl-
edge for model formulaiion is directly imported
from databases. Sets, parameters and decision
variahles are imported [rom relations. Indices are
deduced from the relational kevs specified in data
models [11]. In addition, model constructs that are
compound of relations, keys of relations, and
operators, e.g., arithmetic, sum, product and com-
parison, can be incorperated by data mampu-
lations. However, the databases do nol contain
knowledge on constraints and objective functions,
which requires additional efforts. o increase the
speed of finding models from databases, rather
than investigating all possible linear combination
of elements, the first-cut model discovery derives
some useful knowledge using the restricts from

mining a “syntactically verified” sei of Structured

First-Cut
Model
Diiscovery

trom
| Data Dichiomary
] s -
Thetonary Second-Cut ‘
Model — Madel
Dt Set Duscovery Buse

—

= -
Model [nstance || Model
Generation Inslance

[Figure 1] Overall Framework

Modeling elements from the ariginal data dic-
tionary. We will call is a ‘metaknowledge’ in this

paper. The metaknowledge 1s hased on the
means—ends analysis. The means-ends analysis
applied to General Problem Solver(GPS), is one
of the problem solving methodelogies in cognitive
science [23, 30]. The key activities of the analysis
are (1) to analyze current state to a series of dif-
lerences, (2) to decompose them inta a set of sub-
problems and (3) to select relevant operators to
remove the differences. Thus, the metaknowledge
consists of identifying the gaps hetween the cur—
rent and goal states, decomposing prablems hased
on a ‘divide—and-conquet’ strategy and solving
until no gaps are left. As a result, we can acquire
a first-cut model by collecling candidate SM
elements. The fist-cut model. as structural domain
knowledge, may contribute lo the problem
identification and second-cut model forpmudation [9).

The second-cut model discovery 1s to filter a
“semantically verified” set of Structured Mo-
deling elements from the [rst-cut model. To do
s0, an Artificial Neural Network model is designed
to evaluate how well the elements in the first-cut
model! are fitted to the information in the datahase.
In case of a test element, each model elements
are registered as a set of input nodes, and the
feasibility is registered as output nodes. The neu-
ral network performs learming by training and
testing data that are randomiy generated. Then,
the system acquires interrogating data from the
error rates. I[the error rates from wamning data
and interrogating data are statistically indifferent
and also if the average error rates are scored under
a threshold level, then the model element will he
regarded as semantically meaningful. Thus, the
*semantically” verihed set of SM elements is

stored as a model base.

4. First-Cut Model Discovery
from Data Dictionary

The first—cut model discovery is to build syn-
tactically a sel of well-formed modules from a
data dictionary using the GPS algorithm. The
GPS algorithm is well suited for the prohlem
domaun, which salisfies the following conditions:
first, the domain states should he finite; second,
the operators that move a state to another state
exist. And {inally, the problem should he rep-
resented as a state. Semantics on database 1s
embedded in a data dictionary.

In general, a dala dictionary contains names,
aliases, classifications, descriptions, altributes
with data types and umits. standard represen-
tations and enutiy class memberships. An at-
tribute has its own data type, index set, and units
[10]. We define the specification of the data type,
index, and units of an atlribute as a in a set of
all possibles A is represented as the following
3-luple .

S={DT.I.U>
where DT, : data lype of S, 07T.=eDTt ={DT=
{(V8=8,0T5)
I tindex set of §,lely ={I=
{V¥Se8,1g)
U, . data unit of(1) 8§, Useis ={U=
{¥S5=3, Ug
i1)
Besides, lel an attnbute AASA, A is a set
of attributes of selected problem domain) exist,
then a many-to—one mapping funclion from an
attribute tc its state as o which satisfies:

o{A)=8 (2)

can he derived. Then, from equations (1) and {2):

p(A) = S=< DTp(A) 5 IF(A), Up(A)> (3)

is satisfied.

In LP model formulation, 1t is observed that
each left hand side (LHS} and right hand side
(RHS) in every valid objective function and
constrainis can be identified as a state, and it
satisfies : (1) the data type (2) the mdex set and
(3) the identical unit of LHS and RHS. For
example. suppose a constraint, = A, =X, <8,
1s valid. Then the data type, index set, and unit
of T,4,* X, and B, are the zame. On the other
hand, ¥, A, * X, < D;isnol valid since the index
set of LHS ({j}) is different from that of RHS{{i}).
Murphy addressed that the formulation of the
model 15 valid if the index set of each LHS
matches that of RHS [28]. In general, if at least
one of them 15 not equivalent, the constraint is
1o more valid and additicnal operations to perish
the differences are required. Thus, the necessary
condition of model validation is defined as:

[Definition] Necessary condition of Model
Vaildation: If an LP model is valid, then LHS and
RHS of the model have the same data type, index

sets, and units.

The condition implies that if a modeller elicits
a set of model constructs to formulate an objective
[unction or constraints, then at least the data type,
index sets. and units of the LHS and RHS should
be identical. Meanwhile the aclivities of medel
formulation usually begin with the identification
of decision variables. If RHS is given, then the
maodel formulation effort simplifies to an activity
to determume the relationships among decision
variables and RIS including the identification of
the differences between the data type, index set

and units of selected decision variables and RHS

GPSsl AFUADS BEH dolH¥o| 22 ¥ES) HAATY LAY %

constants. Suppose a prohlem, P, is defined as
follows [16]:

P={Ks),G(sy, M, 5>

where

I(s) : initial state {a state of decision variable),
((s) : goal state (a state of RHS),

M set of operators,

S set of finite states.
{4)

Then, solving for P can bhe interpreted as
reducing the gaps between Ks) and G(s) by ap-
plying appropriate M. When applying operators,
the state changes are added to S. In'LP formula-
tion problems, the initial and goal slates corres—
pond to decision variables and RHS constants, re—
spectively.

4.1 Initial State and Goal State

In formulating models, the problem can be
identified as a discrepancy between present and
desited states of a system, for which the initial
and goal states must be identified and represented

as follows :
Ks5) ={DTgs), I, Urs>, (5)
G(5) = DT s, {eis, Uasr? (6}

4.2 Differences

There are three types of differences: namely,

characteristic, structural, and unit differences.

4.4.1 Characteristic Differences

Characteristic differences are the differences of
dala ivpes beftween any iwo states. Data types
can be classified as primitive data types and
derived data types. The primitive data types are
the fundamental dimensions: e.g., length, mass,

time, currency, etc. The derived data tvpes are

the functicns of primitive data types: e.g., volume

(=length”), acceleration {=length / time®), unit cost
{=currency/mass), etc. Besides, the attributes of
whichever data type is null can also exist. In
general, if iwo vanables have the same data type,
then it is always possible lo calculate if in fact
their values are equivalent [7]. The data type (DT)

has the following characterisiics :

For all state X, Y & §, if DTy = DTy =&, then
DTy = DTy.x = a{Cemmutative),
DTx-v = DTyx = a(Cormmmtative),
DTsy = DTyvx = mull{ Simplification) and
DTxy = DTyvex is undefined.

Forall X, Yand Z £ §, 1s DTy = DTz =g, then
DTuxvnz = a,
DTy = null,
DTy = DTy, where DTe=null and

DTsuver is undefined.

For more information on the laws of structural
arithmetics, one can refer to Bhargava's dimen-
sional analvsis[8].

{ Example 1] For example, suppose any two at—
tributes A,, €, exist and o{A,)= <quantity/
time, {Lj}._>. o(C,) =<quantity/time, {Ij}, thou-
sand>, respectively. Then DT ye 143 = DT
Aprc) = DT pa, oy = ‘quantity/time, that is,
the data type of A,+ C, and C,+ A is identic

a ! ‘quantity/time’.

The characteristic differences can be defined

as.

[Definition] Characteristic Differences * For
any X, ¥ €8, if DTy and DTy are the data types
of X and Y, then there are characteristic dif-
ferences beiween X and Y, if DT y=+=DT5.

This implies that since the relationships
between LHS and RHS in LP medel are linked
in a form of equalty (=) or inequality (<=, >=),
congtraints are valid only if there are no

characteristic differences.

4.4.2 Struclural Differences

Structural differences are telated to the
differences among index sets of attributes. They
are essenfial for model composition in model

formulation [28).

[Definition] Structural Differences . For any X,
Y €5, 1f It and Iv are the index sei of X and
Y, then there is a structural difference between
Xoand Y, if and only if Ie+1Iy.

{Example 2] Suppose that two states X=g
{X,) and ¥=p(B) exist, then Iy={4, 7,
Iy=1{2.IT'if is necessary to sum X, by j then
they have no structural differences smce X =
o(2; X)) and Iy ={i=1I+ In mathematical
programming, ‘' is used to remove structural

differences.

4.3.3 Unit Differences

Each quantity has a base unit of measurement
along with several other units. In the Intemational
Metric System, there are seven fundamental
quantities (or data types) and base units[d] :
length{meter. kilometer, centimeter), mass{kilo-
gram, gram, milligram), lime(second, hour, mm-
ute), electric current{ampere, millamps). tempera-
ture(Kelvin, Celsius, Fahrenheit), luminou
{candala, candle-power) and amount of substance
(mole, kilomole). In addition, currency (dollars.
wons, etc.) is important in mathematical pro-

grammeming There may be a difference hetween

GPSS: dEARYE BT toEolraREe) ARAYTE DAY 97

attributes that have the same data type. and hence,
the unit difference is meaningful only when they
have the same data type.

[Definition] /il Differences: For any X and
Y €58, which satisfy DTx = DTy, where Ux and
Uy are the units of X and Y. respectively. Then,
there is a unit difference between X and Y if

Ues Uy

[Exampie 3] For example, suppose a state X
that represents LHS piece {(‘piece’ means a set
of coefficient and decision variable) and another
state Y that represents RHS constant have the
same data (ype named ‘length’, and the unit of
X is ‘kilo-meters’ and that of Y is ‘meters’, there
is a unit difference between X and Y since Ux
= kilo-meters’ and Uy = ‘meters’. To remove the
difference we may divide X by 1.000: X' = X/1000.
Then. Uz = Ugaon = ‘meters’ = Uv.

4.3 Operators

Qperaters are used 1o remove the three types
of difference. There are a few feasible operators:
eg '+, =%, and "2, Formally, the operator
MM =M, M is a set of operator) is represented
as -

MX->Y

where

X Y astatein S

S: a set of all possible states.

[Example 4] Tn LP, ML = {4+, ', 2L
Suppose that X = <quantity, {i,j}, million> and
Y = <quantity, (i}, mullion> exist. Since there is
a structural difference (Ig={1j}=={i} = Iv). an op-
erator may he applied to X to remove the dif~
ference. The operator will change X into X'=
<guantity, {j}, million>.

4.4 Modeling Engine : Metaknowledge for
Remaving Differences

The modeling engine guides the navigation
within the domain space. It contains metaknowl-
edge for removing differences. The basic concept
of metaknowledge is compound of analvzing
differences, searching proper operations and ap-
plying them. The metaknowledge is used lor re-
moving charactenstic differences, removing
structural differences and removing unit dif-

ferences,

4.3.1 Metaknowledge for Removing Char-
acteristic Differences

Assume that there are two states, X and Y,
and the data types of the states are DTk and DT,
respectively. If DT'x does not equal DTy, then a
characteristic difference exists and a set of new
altributes to which the data types must be
multiplied to DTx. The medeling engine procedure
for characteristic differences is as follows:

[Step 1.1] Analyze the data type of the imtial
stale X(DTxEDT), and the goal state, Y((DTyvE
D1,

[Step 1.2] Compare the differences.

- If there is no difference (DTx = DTy, then
stop.

- QOtherwise. go to [Step 1.3]

[Step 1.3] Seek an attribute of which the data
type is DTyw/DTx that makes DTx mto DTx*
(DTy/DTx) = DTy.

~ If found, then multiply the atiribute to X and

stop.

— Qtherwise, go to [Step 1.4]

[Step 14] Seek attributes of which the data
types are DTy/a and a/DTx, respectively, that

98 A

makes DTy into DTx+{DTy/a)*(a/ DT5)=DTy.
— If both of them are tound. then multiply them
to X and stop.
- Otherwise, go to [Step 1.5]

[Step 1.5] Seek attributes of which the data
tvpes are DTy/a and b/DTx, respectively.
- If both of them are {found, then multiply them
to X and set it as X and go to [Step 1.1]
- Otherwise, stop. Insoluble.

4.3.2 Metaknowledge for Removing Strue-
tural Differences
Let the index set of skate X and Y, Ix and Iy,
exist, and a candidate attribute C(Iz), which can
resolve the characteristic dilference, is entered.
Then the modeling engine procedure for structural
difference is as follows:

[Step 2.1] Analyze the index set of the initial
state X(Ix<I) and goal state Y{[v=D)

[Step 2.2] Compare the index sel of them.

— If £y=1y, then apply = (;._ 1, lo Ix where
2= M, then stop.

- Iy ®® and IyNI1,+%. then go to
[Step 2.3].

- Otherwise, Stop. Insoluble.

[Step 2.3] Search for any altdbute C of which
the index set Ip satisfles 702 (I \UI).

= If found, then muitiply C to X and apply X (1,
to Iy Stop

— Otherwise, stop. Insoluble.

4.3.3 Metaknowledge for Removing Unit
Differences
The transformation of unils is required in the
model solution and model integration [8]. The
algorithm is as follows:

[Step 3.1 Analyze the unils of the initial X (Us)
state and goal state ¥{Uy).

[Step 3.2] Compare Uy and Uk

- If Uy =U,, then stop.

— Otherwise, multiply U¢/Ux to Uy, and then
stop.

4.5 First-cut Model Discovery Process

The first-cut model discovery process involves
problem defirition, sub-problem generation and

difference rescluticn shown asz [oliows:

[Step 1] Problem Definition
[Step 1.1] Determine a problem domain and
identify it as A (a sel of attribhutes
defined in the daia dictionary) and
corresponding state p(A4)= S,

[Step 2] Sub—problem Generation

[Step 2.1] Elicit a decision variable in A and
identify it as an initial state H{5)=¢
DT pay, Lus), Unsy? .

[Step 2.2] Elicit candidates for RHS in A.

[Step 2.3] For each candidate, decompose the
ariginal problem into sub-problems.
Each of the sub-problems are rep-
resented as a poal state (G(S)):
G(S) =< DT 68y, Lo, Uiy .

[Step 3] Difference Resolution. For all sub-—prob-
lems,
[Step 3.11 Apply relevent modelling engine.
[Step 3.2] Repeat step 3.1 until erther of the
followmg conditions is satisfied.
(1) If no dilferences are found, then stop, The
sub-problem 1s solved.
(2) If any differences are found and no rel-

evant modelling engines can be applied,

GPSsh A FHRLE FE Y FolE W o]

then stop. The sub~-problem 15 insoluble.

[Step 4] Determine a medel that is made up of

solved subproblems.

5. Second-Cut Model Discovery

5.1 Model Variation

The modules generated in the previous phase
majf be varied since the model formulation by
removing three types ol differences hetween LHS
and BHS requires only a necessary condition {or
validating models. Hence, the model variation is
requited in order to validate them. Four consid-
erations for model variation are proposed : inter-
vention of at{ributes that have a null data type,
interaction within RESs, intersection of other de-
cision variables and intervention of new decision

variables.

Intervention of attributes that have a null data
type

It is necessary to refine models by adding
coefficients {o LHS or RHS. If the data type of
an attribute is null {e.g. constant), then it cannat
contribute Lo model formulation since it is thought
that no characteristic differences can be detected.

It searches for the following possibilities:

It A={DT 4,14, Uy> and
B={DTg, Ip, Ug»

where DT 4= DTy, 1,= 15, and
U= Ug exists,

then check 1f a state C that satisfies:
DT 4407 DT 2(DC o= null) exists.

{Example 5] Suppose that 3,X,< B,(p(X)

SERES APAGRY Ay 99

=X, p(B,Y=DB) is formulated as a constraint
that satisfies DTx=DTg Ix=1I; and Uy=
Up, that is, there is no difference. However, if
a conslant of{p(c)=C that satisfies DT cx=
DTg, Ipux=1{p and Upwxy= Uy exists, and to

append, it 15 semantically right, then the constraint
should he updated to c*3), X ;< B,

Interaction within RHSs

It implies that il some RHSs are interrelated
and can be compressed, then they can he
congruent in one constraint, [t searches for the
following possibilities:
If A=<DT,, I, Us>, B={DTg, Ig, Ug», and

C={DT I, Us», where

DT a=DTg=DT [=1Iz=1; and

Ua= Ug= U, exists,
then check if a function f salisfies:

DT3=DTyp0,1a= Ixs.0.

UA = Uﬁ; B0 exists,

[Example 6] Suppose that two constraints Y
A X ;<8 and 3, A, X, < C, are generated in
the previous phase, It is possible that 3, 4,X,>

2% B + C; is semantically right.

Intersection of other decision variables

It 15 possible that other decision variables may
affect RHS. It searches for the following possibil-
ities:
If A=<{DTy, Ia, Usr, B={DTg Iy Ugr. and

C=<{DT¢. I¢, Ucd
where DT 4=DTp=DT¢ I4=Iy=1Iq and
Uy=Ug= U exist,

100 Agm .

respectively, then check it a function fthat sat—
isfies:
DTpap=DTc Igam=1Ic and Ugy g= U

exists.

[Example 7] If two constraints, =, A,X, =8,
and 2, C, ¥,= B, are formulated as candidates,
then a varied constraint, >, 4, X, — 2, C, ¥,=

B;, is also syntactically right.

Intervention of new decision variables

Tt specifies the existence of intervening {indi-
rect) effects between an antecedent varable and
its conseguent variahle. It searches for the [ol-

lowing possibilities!

If A=<DT 4,14, Us>, C=<DT¢, I, Ug>,
where DTr,= DT,:', I,=1 and U= UC EXjSt,

then check if a state B=<DTy, Iy, Ug» that

satisfies:

DTA :DTB= DTC';, I_;;: IB: Ic, and

U= Ug= U, exists.

[Example 8] Suppose a constraint 2.,.4,X,2
C, exists. Tt is possible that By and Y, exist and
(r 2 iA.!]“XUZE kBi);/ykj and (]_l) PN kBi*J ijé CJ‘

are also syntactically right.

5.2 Second-Cut Model Discovery Process

To construct a valid model, the first—cut mod-
ules and the derived modules by model variation
activities are to be tested. Actually, it is not easy
[or generic modeling systems, as proposed in this
paper, to warrant model validity [23]. Cne of the
typical methods [or model validity is to test the

feasibility hy using past data [Z], and specially test
by causal modelling or path analysis {1]. We com—
bine the two methods using the back propagation
method, which is one of the Arlificial Neural Net—
work techniques for knowledge discovery. The
rationale of applying netral netwerk techniques
to model validation 18 that if a module is right,
then learned patterns from the real data set and
those from artificial data set will be stmilar. Tn
other words, 1f a madule is valid, then the simi-
larity of real feashilihty set and estimated feasi-
hility set through the module and randomly gen-
erated data sel will be signicantly high. For thus
kind fesi, Lirstly. an artificial data set of decision
vartahles is prepared by the random number gen—
eration. Then, the teasibility values for each data
records are computed as a set of binary values
by applying to the module. For the nest step, a
neural network medel is designed. In designing
the neural network model, the input nodes repre—
sent decision variahles mn a first—cut module, and
the cutput nodes indicate the feasibility of the
module, For example, if there is a module such

as:
> USING _ RATE* PROD_ QUANTITY<

MAXIMUM_DAILY CAPACITY,

then the decision variables, PROD_QUAN-
TITY, represent the input nodes.

At this time, il is our assumotion that il the
network model learns with training and testing
data which are arlificially prepared. then the
correctniess level of the network model from the
artificially prepared data set and that from the
real data would be most similar when cormpared
with other modules in the same variation group.
As a matter of course, if the correctness levels
of all modules in a same variation group do not

|22 2Ee] AYAEHRY FEY 101

compare io the correctness level from the arti-
ficially prepared data set, then the modules are
judged as invalid.

There are two useful measures: similarity level
and usefulness level. Similarity level measures
how the correctness of learning rule interrogated
by real data is similar to that of learning Tule
interrogated by training and testing data which
are artificially and randomly prepared.

Similarity Level :

S(4, a1, a9, ..., @, = 100 -

12C0G, @y, @, s @3- Clé, @y, @2, ., @, 1)+
Cliay, as, ., @20

where S(, e, @, ..., a,) designates the simi-
larity level of module i, and C(7, @), @, ..., @,
1) C(i, ay, @y, o.n, @, 2) and CC4, @y, ag, .,
., 3) designate the correciness level for mod-
ule i by traming. testing and real data, respec-

tively.

The usefulness level indicates shows how well
the learning rule from a neural network model

explains the real situation.
Usefulness Level :
XH=(CUi a, a,.. .1} +
C(Z, @y, Aoy ey Xy, 2)+ C(i,\’fl, Aoy oiiy Ty 3))1"3:
where T10) indicates the usefil level of module 1.

For example, let us assume that the following

module exists in the same model variation group.

S USAGE RATE* PROD_QUANTITY <«
MAKIMUM_DAILY CAPACITY+ o ;WEIGHT

where @y, & ave real numbers,

A procedure for the second-cut model

discovery shown in [Figure 2] (e.g.t @16+ azby)

is listed as follows :

[Step O] Initialization

Initialize @, =1,a;=_0. Run the cell. Then ac-
quire S(7, a1,) and insert into the set of candi-

dates.

Tarnporal
Marmary

Testing Celi Ganaralicn

:
Saarch next call

Selecl
Vald cell

Sel of
Tested cells

Store as a
candidate csll

Sel of
Candidate celis

[Figure 2] A Proceudure for second-cut model
discovery

[Step 1] Testing cell generation

Generate eight neighboring testing cells where
(5,8,8;=0,(8=88=-0), (508"
&), (8=0.8,=-8), (6,70,8,=0),18=-4
8,=0),(8,=-8 8= Sand(8;=— 8, &=)
Then, store them in the temporary memory.

[Step 2] Termination check

Check if there is no testing cell in the tem-
porary memory, then go to step 6. Otherwise, go
to step 3.

[Step 3] Running

For a generated cell in the temporal memory,

test 1f the cell has already been tested. If s, prune
it and go to step 2. Otherwise, run the cell and

then deterrmine S{ 7, a+ 8y, o + Ge) — SU3, 2y,
g)

[Step 4] Check by prunung rules

102 Rl

Check if the cell (e+ 6y, @y + &) satisfies at
least one of the following pruming rules, then,
prune it

Rulel . It T <A, then prune it

RuleZ 1 If &4, ay, as, ... @,,3) < gthen prune
it, where 7 designates the minimum
allowable correctness level.

Ruled - If S(4, a4 81, a7+ 80— 504, @), a2) <
#, then prune it, where z designates
the maximum allowable dechming
amount of simlarity level.

Otherwise, go to step 5.

[Step 5] Cell insertion

Insert the cell { @+ &), a5 + 89) into a zet of
candidate cells. Then set @)= @)+ 8y, @y= a3 + &5,
and then go ta Step 2.

[Step 6] Valid module determination

Select a cell that has the maximum similarity

level in a set of candidates rells as a valid module.
6. An [llustrative Example

To show the feasibility of the 1dea described
in this paper, lel us show an illustrative example,
The <Table 1>, <Table 2> and <Tahle 3> show
data dictionaries and some records of the example.
In each table, first row designates the data field
name. The underlines are the candidate kevs. The
second row shows the data type of fields. The

{Table 1 Raw__Materal(i)

RAW. | o, o MIN_INV_| UNrT_ |MAXTMUM.
p | Raw s MR- TR DALY
CAPACITY

Strng(4)] Suing(20) | Numeric |[%Numerd] Numere
- - Kg 1000 Tons
M1 |Raw Material 1| 5000 L2 24
M2 |Raw Matenal 2| 1500 09 G

third row conlains the unit of correspending fields,
il any. Finally, the fourth row mdicates the ex-
ample data.

{Table 2» Product{])

PROD_ PRCD_ PROD_ PROD_ CNIT_
D NAME DATE |QUANTITY| PROFIT

String(3)| String(30) Date Numeric |$/ Numerne
- - - 1000 1000
X1 [|Extencr Paint| 1998/10/8 452 5
Al |Exterior Pami| 1998/10/9 375 5
X1 |Esteriar Pagnt|1998/10/10 402 5
Al [Esterior Pant|1998/10/11 413 5
X1 |Exterior Paint|1598/10/12 476 5
X2 | Intenor Pant | [S98/10/8 353 4
X2 | Intenor Painl | 1998/10/9 245 4
X2 ! Interior Pant | 1998/10/10 26.7 4
X2 | Interior Pamnt | 1993/10711 19.0 4
X2 | Intenen Faint {1998/10/12 217 4

{Table 3> Involves(],J)

. USAGE_
RAW_ID | PROD_ID |Equipments RATE
String(2) | Swing(2) | String(10y | umenc /

o Numeric
- - - Tons
M1 bl Mixerl 6
M1 Xz Mixer], 4
M2 X1 Mixer? 1
M2 X2 Mixer2 2

The data dictionary on the above example can
be described as follows:

p(RAW_ID) =<string(4), {i}, >

A RAW_NAME)} =<string(20), {i}. _>

o(MIN_INV_REQ) =<numeric, {i}, kg>

o UNIT_COST) =<$/Numerie, {1}, 1000>

o MAXIAM UM _DAILY_CAPACITY)
=<numeric, {i}, tons>

el PROD_IDY =<string(3), {j}, _>

elPROD_NAME) =<string(20), {j}, _>

2(PROD_DATE) =<date, {i}, _»

el PROD QUANTITY) =<numeric. {j}, 1000>

o(UNIT_PREOFIT) =<$/numeric, {j}, 1000>

o(EQUIPMENTS) =<string(10), {ij}. _>»

o{USAGE_RATE) =<numetic/numeric, {1.j},
lons>

<Table 4> shows the first-cut mode! discov-
ery process for the given example.

As a result, the following two modules are
deduced.

1000+ JUSAGE_RATE+PROD_QUANTITY <
F

MAXIMUM_DAILY_CAPACITY
1000000+ 2,USAGE_RATE'PROD_QUANTITY
4

2MIN_INV_REQ

In order to construct a second-cut model,
applving the model variation rules tests the
first—cut modules. According to the inieraction
among RHSs rules, the following module is
generated:

1000 Z USAGE_RATE+«PROD_QUANTITY < e

MAXIMUM_DAILY _CAPACITY-0.001* a2
MIN_INV_REQ

Where @,y is real

For the back propagation, Neural Planner

Bl o] B ¥ o] 22 R el] AFA YT

i
i
o
&

Ver.4.52 is adopted. Neural Planner 1s a neural
network system for Microsoft Windows, Neural
Planner can learn from iramning files, sell-test
using testing files and are interrogated by inter—
rogating files. It can produce spreadsheet or
hierarchical cutput files interactively. The [Figure

3] shows an example learning mode interface.

1000 ZUSAGE_RATE«PROD_QUANTITY <10
*MAXIMUM DAILY _CAPACITY-0.001#1
MIN_INV_REQ

Then to make a valid model, a neural nelwork
model 15 designed as follows !

Input Notes. PROD_QUANTITY (X1, X2)

Hidden Nodes: three hidden nodes

Output MNodes: Feasibility

Training and testmg data ser. 1000 records of
PROD_QUANTITY (X1, X2) are artificially acquirced
by random number generation.

Interrogating data set: 600 records of PROD_
QUANTITY (X1, X2) are prepared from real data
file,

Tbal eondition (paramelers):

a1 = 10

ar = 00

F =02

7 =06

¢ =005

{Tahle 4> Progess of first-cut madel discovery process far the gven example

Srep Current State Differences Operators Goal State
1 o (PROD_QUANTITY? 2 (MAXIMUM_DAILY _CAPACITY)
|-y | #PROD.QUANTITY) = | Structural |FInd 1) o (MAXIMUM_DAILY_CAPACITY) =
<npumenc, (i}, 1000> Differences ;ZJSAGE;RATE <numenc, {1}, tong>
1-2 | <numeric, {;}, 1000+tons> U?Ut Multiply 1000 to LHS | <numeric, ii}, tons>
Differences

1-3 | <numenc, {1}, tons>

<numeric, i), tons>

2 | p(PROD_QUANTITY)

ol MIN_INV_REQ)

g FIY) = Find {ij} i
2-1 zrfPRe?if_ﬁ}D j{i“(]]\()ﬁ(; L %)E]ecr?;iq S USAGE_RATE | @ (MIN_INV_REQ) = <numenc, {i}, kg>
umerie, 17, s | 5
Unit Mudtiply 1000+1000 to

2.9 1 i
2-2 | <numeric. {i}, 1000%tons>> Differences |THS

<numeric, {1}, kg>

2-3 | <numere, i), ke>

<numenc, {1}). kg>

5 »ik,-.!‘ﬁ‘:"mﬂi{'-‘lﬂ;fé
e

A e

|
- |

[Figure 31 Sample screen of Neural Planner

[Figure 4(a)] and [Figure 4{3}] show the search
tree for the example. The blue—cclored cells
designate pruned cells. Finally, cell 15 selected as
the coptimal soluticn, and therefore, the following

module is selected as a second-cut module,

[Figure 4{a)] Search Tree

fm =350, ~0 0

Felmssous
Far200
o7 by

4)
(a.-HLa:-l?IJJ oy =0 &g = T3)
jorn- s HOLTEREIN
Jf =83 0hrt [fm 95 3T

|5 - 27 18m- i e

\u\n]?'zz:-ﬂgj oy = 1 0o = 11]
L REEH nq CT3) - 2 607
5 -85 o ! 5 82 12
O Nl iV 99 337
=12 @m0y (e) Oy =] 03
(T~ 07 234 03 - 96 Bl
7T 0 s -9 a0ms
s~ 95 543 0= 53 380
(=1 2ae | D] [l =1 E e =117 foqul [aget
o - 0l s =5 I PR Cispe 2
5 57 05% 523 1r EFCEN
L= 93 p 25 35 aar, L-57

[Figure 4(b)] Search Tree (conttinued)

Finally, the executable SML programgenerated from

the second~cut model is as shown in [Figure 4,

&PROD PROCUCTION SECTOR

RAW_MATERIAL: /pe/ There is a list of RAW MATERIAL,
MAXIMUM DAILY CAPACITY (RAW_MATERIALY) /a/
RAW_MATERIAL . Real+ Every RAW MATERIAL has a
MAXIRMUN_DAILY_CAPACITY measured in fons.

MIN_INV_REQ (RAW_MATERIALD faf
RAW_MATERIAL : Real+ Every RAW_MATERIAL has a
MIN_INV_REQ measured i kalograms.

PROCUTS /pe/ There 15 a hst of PRODUCT
PROD_QUANTITY (PRODUCT) /va/ PRODUCT : Realt+
Every PRODUCT has a nonnegative PRODUC_QUANTITY
measured 1 iHoUSANGS

UNIT_PROFIT (PRODUCT]) /a/ PRODUCT : Real+ Bvery
PRODUCT has a nonnegative UNIT_PROFIT measwed in
thousands

INVOLVES (RAW_MATERIALI, PRODUCT)) feo/ Select
RAW_MATERIAL x PRODUCT where i covers RAW_
MATERIAL, | covers PRODUCT A FRODUCT INVOLVES
RAW MATERIAL There must be at leasl one INVOLVES
nerdent lo each RAW MATERIAL, and al least one INVOLVES
ncudent, 10 each PRODUCT

USAGE RATE {INVOLVESi]) /a/ INVOLVES : Real+ Theie
can be a noaneganve USAGE RATE over each INVOLVES

$ (PRODUCT) A/ 1 ; @ SUM) (PROD_QUANTITY] +
UNIT_PROFIT]) There is a TOTAL PROFIT associated wilh
all PRODUCT

T:30P (RAW_MATERIALL, RAW MATERIALD /t/
RAW_MATERIAL ; 1000 + @SUMj (USAGE_RATEj *
PROD_QUANTITY]) <= MAXIMUM_DAILY_CAPACITY:
0001 = MIN_INV_REQ: Is the lolal RAW_MATERIAL used
to product PRODUCT to FRO_QUANTITY level less than or equal
to MAXIMUMDAILY_CAPACITY minus MIN_INV_RLCQ? There
is called the SUPPLY TEST

(Figure 51 The example output SML program

7. Conclusion

Comparing with data mining techniques, the

methedology produces additional kind of knowl-

GPS23t 13 dZHE 853 dojelo] RN AgAYRY Ty 105

edge. Finding useful knowledge from database
has become more critical in the recent competitive
and enterprising environment. The knowledge
has been represented as asscciation rules, classi-
fication, clustering, regression, etc. However, in
databases, there is something more than what the
current knowledge discovery techniques can pro-
vide. We drew attention to the mining opti-
mization knowledge and investigate why the lin—
ear programming models would be one of the most.
useful forms of knowledge buried in databases.
As a result, linear programming model discovery
[rom database is proposed in this paper.
Furthermore, comparing with legacy knowl-
edge-hased model formulation support systems,
our melhodology provides decision makers with
more general model formulation support through
separating generic formulation knowledge and
domain-specific formulation knowledge, We
show how the GPS and neural network technique
can he combined to discover models from data-
bases, The methodology 1s more beneficial to the
data—oriented decision supporf svstems like data
warehousing and OLAP hecanse it is adaplable
to domain changes. The neural network can dy—
narmically accommeodate domain changes and pro-
duces newly modified domain-specific formu-
lation knowledge. Hence, the capability may over—
come the limitations of mesa effect that legacy
knowledge-based formulation support systems

possess.

REFERENCES

[1] Asher, HB., Causal Modeling, Beverly Hills,
CA: Sage Publication Inc., 1983.

[2] Ata, N, Courtnev, JF., and D.B. Paradice,
“A Prowotype DSS for Structuring and

Diagnosing Managerial Problems”, IEFE
Transactions on System, Man, and Cyber-
netics, Vol.18, No.6(1988), pp.899-907.

[3] Becker, K. and Bodart, I, “Methodological
and Software Environment for Model
Formulation Based on Reusable Object
Frameworks , Proceedings of the Inter-
national Conference on Dectsion Support
Systerm, Vol.16(1995), pp.611-626.

[4] Berry, M., and G. Linoff, Data Mimng
Techniques - For Marketing. Sales, and
Customer Support, John Wiley & Sons, Inc.,
1997. .

[5] Bhargava, HEK. “A Simple and Fast Nu-
merical Method for Dimensional Arithme-
tic”, Naval Postgraduate School, Working
Paper No.90-01(1990).

[6] HK. Bhargava. and R. Krishinan, “A For-
mal Approach for Model Formulation In a
Model Management Svstem”, The 24th
Hawaii International Conference on Svstem
Sciences{1990), pp.453-452,

[7] HLK. Bhargava, and S.T. Iimbrough, “On
Embedded Languages for Model Manage-
ment”, The 24th Hawail International Con-
ference on Svstem Sciences(1990), pp.443-
452,

[8] Bhargava, HK., “Dimensional Analysis in
Mathematical Modeling Systems : A Sim-
ple Numerical Method,” ORESA Journal on
Computing, Volb, No.1(1993), pp.33-39.

[9] Binbasiogly, M., “Role of Structural Do-
main Knowledge in Problern Understand-
ing and Model Formulation”, Proceedings of
the Annual Meeling Decision Sciences
Institute{1990), pp.341-344.

[10] Brathwaite, K.5.. Analysis, Design, and fm-
plementation of Data Dictionaries, McGraw—

Hill Book Company, CA, 1988,

[11] Choobineh, J., “SQLMP : A Data Sublan-
guage for Representation and TFormulation of
Linear Mathematical Models”, (M2SA Jour-
nal on Computing, Vol.3, No.4(1991), pp.358-
375,

[12] Fayyad, UM, Piatetsky—Shapiro, G, and P.
Smyth, “From Data Mining to Knowledge
Discovery”, In Advances in Knowledge
Discovery and Data Mining(1996), pp.1-34.

[13] Frawley, W.J, Piatetsky-Shapiro, G., and
C.J. Matheus, “Knowledge Discovery in
Databases © An Overview”, In Knowledge
Discovery i Databases, ed, . Piatetsky—
Shapiro and B. Frawley, Cambridge, Mass :
AAAT/MIT Press(1991), pp.1-27.

[14] Geoffrion. AM., “Reusing Structured
Models via Model Inlegration”, Proceedings
of the Twenty Second Hawail International
Conference on System Sciences(1989), pp.
601-611.

[15] H.J. Greenberg, A Primer for MODLER:
Modeling by Object-Driven Linear
Elemental Relations, University of Colorado
at Denver, Denvor, Feb.,, 1991,

[16] Guvenir, HA. and GW. Emst, “Learning
Prohlem Solving Strategies Using Refine-
ment and Macro Generation”, Artificial
Intelligence, Vol.36, No.2(1990), pp.209-243.

{17] Jiawei Han, “Mining Knowledge at Multiple
Concept Levels”, Proc 4th Ini'l Conf. on
Information and Knowledge Muanagement
{CIKM'G5), Baltimores Marvland, Nov.
(1995, pp. 19-24,

[18] J. Han and Y. Fu, “Discovery of Multiple-
Level Asscciation Rules from Large Data-
bases”, Proceedings of 1995 Int'l Conf on
Very Large Data Bases (VILDB'G5), Zrich,

switzerland, September 1995, pp.d20-431.

[19] Jiawei Han, Yongjian Fu, Wel Wang, Jenny
Chiang, Wan Gong, Krzysztol Koperski,
Deyi Li, Yijun Lu. Amynmohamed Rajan,
Nebojsa Stefanovic, Betty Xia, Osmar R.
Zaiane, "DBMiner @ A System for Mining
Knowledge in Large Relational Databases”,
FProceedings of 1995 Int'l Conference on
Dara Mining and Knowledge Discovery
{KDPY06), Portland, Oregon, August 1996,
pD.230-255.

[20] J. Han, J. Chiang, S. Chee, J. Chen, Q. Chen,
5. Cheng, W. Gong, M. Kamber, K,
Koperski, . Liu, Y. Lu, N. Stefanovie, L.
Winstone, B. Xia, O. R. Zaiane, S. Zhang, H.
Zhu, “DBMiner: A System for Data Mining
m Relational Databases and Data
Warehauses”, Proc. CASCONG?: Meeting
af Minds. Toronto, Canada, November 1997,

[21] Krishnan. R, Li, X. and D. Steier, “A knowl~
edge-based mathematical model formulation
system”, Communications of the ACR, Vol.
35, No9(1992), pp.138-146,

[22] Kwon, Q.B., and S.]. Park, “RMT : A Mod-
eling Support System [or Model Reuse”,
Decision Support Svstem, Voll6, No.l
{1996). pp.131-153.

[23] Laird, J.E.. Newell, A.and P.5. Resenbloom,
*SOAR : An Architecture for General Intel-
ligence”, Artificial Intelligence, Val.33, No.l
{(1987), pp.1-64.

[24] Li, X, Jehling, C.P,, and P.W. Grant. “A
Enowledge Representation Scheme [or Au-
tomatic Model Formulation”, The 7 Sym-
positrn on Computer aided control systems
design(1997). pp.36b-379.

[25] Liang, T.P., “Modeling by Analogy: A
Case-Based Approach to Automated Linear

Program Formulation”, Proceedings of the
Twenty Fifth Annual Howail Infernational
Conference on System Sciences{1991}, pp.
276-283.

[25] T.P. Liang, “Analogical Reasoning and
Case-Based Learning in Model Manage-
ment Syslems”, Decision Support Systems,
Vol.10(1993), pp.137-160.

[27] P.C. Ma, F.H. Murphy, and A. Stohr, “A
Graphics Interface for Linear Program-
ming”, Communications of the ACM, Yol.32,
No.8(Aug. 1989), pp.9s6-1012.

[78] Murphy, TH., Stohr, EA, and P.C. Ma,
“Composition Rules for Bullding Linear Pro-
gramming Models from Component Mod-
els”, Management Sciences, Vol.38, No7
{1992), pp.948-963

[20} FH. Murphy, and E.A. Stohr, “An Intelligent

CPS® Q1 EAA%E BEE dol=ulo

|rz2Ee] ARANRY dA 107

System for Formulating Linear Programs”,
Decision Support Systems, Vol.2(1986), pp.
39-47,

(301 Newell, A., and H. Simon, Human Problem
Solving, Englewood Cliffs, NJ: Prentice-Hall
Inc., 1982.

[31] Tseng, S. F., “Diverse reasoning in auto-
mated model formulation”, Decision Support
Systems, Vol.20(1997), pp.357-83.

[32] Vellore, R. C., Vinze, A. S., and A. Sen, “Un-
derstanding the Case-Based Approaches to
Model Formulation”, Proceedings of the
Annual Meeting Decision Sciences Insti-
tute(1990), pp.323-335,

[33] A. Vinze, A. Sen. and S.T. Liow, “ATROBA -
A Blackboard Approach to Madel Formula-
tion”, Journal of Management Information
Systems, Vol.9, No.3(1993), pp.123-143.

