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ABSTRACT

This paper proposes a general approach of the multivariate exponentially weighted moving average
(MEWMA) chart, in which the smoothing matrix has full elements instead of only diagonal elements
The average run length (ARL) properties of this scheme are examined for a diverse set of quality
control environments and the imformation to design the chart is provided, Performance of the scheme
is measured by estimating ARL and compared to these of two group cumulative sum (CUSUM)
charts. The comparison results show that the MEWMA chart can improve 1ts ARL performance 1n
detecting a small shift by using appropriate nendiagonal components in the smoocthing matrix. When
the process shifts out—of—control i the start—up stage, the general MEWMA chart of a full smooth—
ing matrix appears to cffer an exceptional protection against departures from control n the process
mean.

1. INTRODUCTION

A quality control (QC) chart scheme alternative to the standard Shewhart »*

chart 13 the EWMA chart. Since Roberts [12] introduced the use of EWMA tech-
nique for constructing a control chart for an umivariate normal process with inde-
pendent and identical distribution, the EWMA control scheme has been exploited
and its properties has been evaluated numerically and analytically (Robinson and
Ho [13]; Crowder [2]; Lucas and Saccucci [10]). Assuming that the observations
are independent over time, the QC procedure uses an EWMA techmque for de-
tecting when special causes of variation enter into a system. The univariate EW-
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MA procedure was extended to a multivariate control chart scheme for controlling
the mean of a multivariate normal process (Lowry, Woodall, Champ and Rigdon
[9]). The MEWMA chart is a straightforward generalization of the corresponding
univariate procedure, using a smoothing weight of diagonal matrix.

A general MEWMA chart is proposed in this paper. In this control chart
" scheme, the smoothing weight is defined with a general matrix including nondi-
agonal elements. The MEWMA chart is directionally invariant when using a di-
agonal smoothing matrix, that is, its ARL performance is determined by the mean
vector g and covariance matrix > only through the value of the noncentrality

parameter

Do == ptg) I aag).

The MEWMA chart of nondiagonal smoothing matrix does not give this direc-
tional invariance property, however. This study evaluates the ARL performance
of the general MEWMA chart for various covariance structures and mean shift
directions of process on the basis of 10,000 Monte Carlo independent simulation
runs. Design of general MEWMA chart is discussed in the next section and the
following section which contains numerical results. Thas 1s followed by the per-
formance comparison of general MEWMA charts for various QC characteristics
with the directionally-variant group CUSUM control charts that operate multiple
univariate CUSUM charts simultaneously. For the case of using a diagonal ma-
trix, Lowry, Woodall, Champ and Rigdon [9] compared the MEWMA chart in ARL
with the other multivariate control charts which are directionally invariant, and
performance of the group CUSUM charts was extensively evaluated including
comparison with the directionally-invariant multivariate control charts in (Choil
and Lee [1]). In a subsequent section, some conclusions are presented.

2. GENERAL MULTIVARIATE EWMA CHARTS

Recently. there has been interested in using EWMA charts to detect shifts in the
process mean level for QC. Crowder [2] and Lucas and Saccucei [10] thoroughly
investigated properties of univariate EWMA charts and suggested design strate-
g1es, and Lowry, Woodall, Champ and Rigdon [14] proposed a multivariate EW-
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MA chart using a smoothing matrix of diagenal form. Suppose that the successive
measurements {x,, n=1,2,..} are mdependent and identically distributed

multivariate normal random vectors x,~ N{x, > ). For simplicity, assume that
the in-control mean vector #g=(0,0,---,0Y=0, and the covariance matrix 3 is

known and normalized such that all diagonal elements are 1. Similar to the uni-
variate EWMA chart, the MEWMA chart for a p—varate normal process was

implemented by defining an MEWMA vector
v.~Rx +{I-R)y_ (N

for n=1,2,--- where y, =0 and the smoothing matrix Ris a diagonal matrix
whose diagonal elements are {0<rn <1, 1 =1,2,---, p}. Unless there is any rea-

son to differently weight the quality characteristic measurements related to the
normalized covariance matrix 3, all diagonal elements of the weight matrix ecan
be set to an equal value, that is, n=r=--= rp=T This MEWMA control sche-

me gives an out-of-control signal as soon as

T =y, L'y, >h (2)
where
Cr[i-a-mn*]
T = 3

for a given threshold A >0. In QC practice, 1t is likely that the process stays in
control for a sufficiently long period but later shifts out of control. Based on this
fact, the control chart can be alternatively designed with the asymptotic covari-
ance matrix

2y = z. (4)

The EWMA chart using the exact covanance matrix has the fast initial re-
sponse (FIR) feature and then detects more quickly for the initial out-of-control.

A natural extension is to use a smoothing matrix R having full elements in
(1) if there exists interaction between the vamables in multivanate process. This
study examines the MEWMA chart using a smoothing matrix of general form, in
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which the smoothing weights associated with each variable are egquivalent under
the assumption that the scale of each vanables is uniform. If r, 1s the G, /)th

element of the smoothing matrix R, the matnx for a p-variate process 1s
formed in this study such that r, =r,, for i=12,--,p and 75, =r, for
,j=1,2,--,p and i# ;. To investigate the effects of smoothing manner with

the same total weight for each variable of the MEWMA vector, the row sums of
R are constantly fixed such that

1

r=

lrij = Fu+ (P~ 1) rop, VI {5)

J

If the smoothing matrix has off-diagonal elements, the covariance matrix of
the MEWMA vector y, is more complicated and is recursively calculated in the

control chart procedure:

¥, =% +RI R (®)

for n=1,2,-- where Zv. ~RYR and R=1-R. It is easily shown that covari-

ance matrix of (6) is converged as n — » for the smoothing matrix satisfying (5)

and 0<r<1 because the matrix R is diagonally dominant (Cullen [3]). Since it
is not appropriate to use the off-diagonal weights greater than the on-diagonal
weight 1n the smoothing manner for the multivariate process, this study uses the
matrix R such that ru =cre. for 0< ¢ <1, Then, given r and ¢,

r cr

Ton = T, e d off — T o -
TS i p-ne T T I De

The MEWMA chart of Lowry, Woodall, Champ and Rigdon [9] corresponds to
the scheme using R with ¢=0. Table 1 contains an example of the full
smoothing matrix R with r=0.1 and ¢=0.75. [n the next section, the proper-
ties of the general MEWMA chart are examined for variation of the values of r
and c.
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Table 1 Covarlance matrix Zy, of MEWMA vector y, with 7= 0.1 and ¢ = 0.75
for negative correlation type N—8 in time .

Rof 1=01 and ¢=0.75 2 of N-8
0.031 1
0.023 0031 -0.8 1
(023 0.023 0031 0.8 -0.8 1
0.023 0023 0023 031 -8 0.8 -08 1
v,
{n =101} {(n=201)
0 (0055 0.0061
0 0000 0.0055 -0.0004% (.0061
0 0049 0.0000 0.0055 0.0054 -0.0006 00061
{0000 00049 0.0000 0.0055 -0.00056 0.0064 -0 D003 0.0061
(n=1301) (n=401)
0.00G3 0.0063
-0.0006 0.0063 -0.0006 0.0063
0.0065 -0.0006 0.0063 0.0055 -0.0006 0.0063
-0.0006 0.0055 -0.0006 0 0063 -r.0006 0.0055 -0.0006 0 0DE3

3. ARL PERFORMANCE OF THE GENERAL MEWMA CHARTS

The ARL performance of general MEWMA control schemes are evaluated using
multivariate normal processes that are ssmulated with various QC characteristics.
The QC characteristics considered are the correlation structure and the direction
of the shift in the mean vector. The correlation structure equivalent to the nor-
malized covariance matrix represents the most important attribute of the meas-
urements from a multivariate normal process with zero mean, and the out-of-
control condition is usually characterized by the shift direction for the problem
controlling the mean of a multivariate process. We choose the six correlation
structures and three shift directions, which are used in {Choi and Lee [1]). The six
correlation structures are categorized into two classes: the positive type, in which
variables ¢ and j for ¢+ j have a negative correlation if 1+ is odd and a posi-

tive correlation if ¢+ j is even. For sumplicity, assume that absolute magnitudes

of correlation between the variables are uniform. Then, the positive types are de-
noted by P-2, P-5, P-8 with the absolute magnitudes of 0.2, 0.5, 0.8 respectively
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and the negatives types by N-2, N-5, N-8. An example of the correlation type of N-
8 1s 1llustrated mn Table 1. The out-of-control mean process 18 modeled with tree
types of shaft direction :

(1) Equal Shift, in which all components of x are equal ;

(2) Symmetric Shift, which differs from Equal Shift in that the first half compo-
nents of # have different signs to the second half;

(3) Only Shaft, in which only a single component of u is nonzero.

For Only Shift, we randomly choose one of all the vanables for the out-of-control
situation in each simulation run. The ARL performance 1s evaluated for six
amounts of shift distance from the desired mean level corresponding to the values
of noncentrality parameter 7, =0.1,0.2,0.4,0.8,1.6,3.2 respectively. We also

consider two states related to the time point for the ocut-of-control situation : the
“steady” state, in which the process becomes out of control after imitially staying
in control for a substantial period, and the “initial” state, in which the process
changes into an undesirable condition from the very first point. Table 1 shows the
covariance matrices of {6) in the MEWMA procedure using »=0.1 and ¢=10.75
for several time steps. It is an example for the case in which the covariance ma-
trix most slowly converges among our charts examined in this study. As illustrat-
ed in the table, the general MEWMA chart procedure achieves the steady
parameter at least after the initial in-control period of 300 for the 4-variate proc-
ess. We assume that out-of-control conditions are suddenly introduced on the
process after running in control for 300 sampling stages. The ARL values were
estimated from 10,000 simulation runs using independent random seed number
for each case considered.

First, we investigate the properties of the ARL performance of the MEWMA
charts for 4-variate normal processes using the control limits which result in ARL
= 300 for in-control processes in steady state. Table 2 contains the estimated val-
ues of threshold h for six correlation types based on independent 10,000 simula-
tion runs. The estimated values of A vary in the correlation types except ¢=0,
but h values differ by less than 0.5% of the values. The MEWMA chart uses a
greater value of threshold h as increasing r and ¢ for the same r. Table 3
displays the averages and standard deviations of the estimated ARLs for six cor-
relation types for the MEWMA charts of r=0.1,0.2,0.5 and ¢=0,0.25, 0.5

0.75. Using the h values of in-control ARL = 300 in Table 2, these results were
obtained from total 60,000 simulation runs by applying the six types to each
10,000 runs respectively. Table 3 shows that the scheme has the best ARL per-
formance with different combinations of r and ¢ according to the distances and
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directions of the shift in the mean vector. The chart appears to performs best with
r=0.1 and ¢=075 for 5, <16, r=02and ¢=0.75 forp, =16 and r=05

and ¢ = 0.0 for the largest shift distance. In the other shift directions, the shartest
ARL is given by the nondiagonal smoothing schemes with r = 0.1 for 7, < 0.8 and
the charts of the diagonal smoothing matrices with » = 0.1, 0.2, 0.5 show the best
performance for n, = 0.8, 1.6, 3.2 respectively Generally, the MEWMA chart
vields a shorter ARL with smaller r for a small shift and larger r for a large shift,
For a small shift, the ARL performance is improved in Symmetric and Only Shifts
greater than in Equal Shift by using a nonzero ¢c. When shifting a large amount in
the mean vector, ARL decrease in Equal Shift except for » = 0.5, but is longer in
the other directions with a large value of ¢. Compared to the size of the corre-
sponding length, the standard deviations of ARL for the six correlation types are
not significant in the Equal and Symmetric Shift directions, but 1s not for Only
Shift. The ARL results in Table 4 show that the nondiagonal smoothing scheme
has a little variation in ARL for the different classes of correlation type in the
manner that its ARL is shorter in the positive class for a small shift and the
negative class for a large one. The performance of the MEWMA charts when ¢ =20
also appears to be sensitive on the different shift types of the process mean. For
examples, the chart of r = 0.1 and ¢ = 0.5 has the ARLs of 147.9, 118.7. 122.9 for
n. = 0.2 and 6.77, 11.53, 10.26 for n,= 1.6 in the Equal, Symmetric and Only
Shifts respectively.

Table 2. frvalues of in—control ARL = 300 for general MEWMAS for steady state processes of p= 4.

r € N-8 N-5 N-2 P-2 P-5 P-8
0 13 83 13.83 13.83 13 33 1383 13 83
a1 0.25 12,61 12.62 12.63 12 61 12 62 12,63
0.5 11 49 11.50 11.50 11.51 11.48 11.49
0.75 10,11 10.12 10.11 10.09 1009 10.13
0 14.93 14.93 14 92 14.93 14.93 14.93
0.2 0.25 13.96 13.97 13 97 13.98 13.97 13.98
0.5 13.05 13.04 15.02 13.00 13.00 12.98
0.75 11.78 11.7% 11.80 11.76 11.77 1176
0 15.62 15.62 15 62 15.62 15.62 15.62
0.5 0.25 15.22 15.21 15 20 15.19 15.21 15.21
0.5 14.49 1451 14.49 14.52 14.52 14.55
0.75 13.46 13.45 13.45 13.48 13 47 13.49
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Tabla 3. Average (standard deviations) of ARLs of general MEWMAS for six correlation types
using #of In—control ARL = 300 for sieady state processes of o= 4.

Equal Shift

? c 7, =0.1 n. =02 7. =04 7. = 0.8 n=18 7. = 3.2
0 245 6{0.5)  158.6(0.9) 61.3(0.2) 18.6(00; 7 06(0.00) 3.31(00D0)
01 0.25 242,2(0.9) 153.8{0.5) 59.0{0.2) 18.3(0.0)  6.97(001) 3.27(0.00}
0.5 240.1(0.6) 147.9(1.1) 57.4(0.1) 17.9(0.0y 6.77(001) 317(000)
075 *2594 1{1.8) *141.4{1.3) *34.1(0.2) *16.8(00) 6.40(0 01} 3 00(0.00)
Q 267.6(0.9) 200.6(1.3) 88 3(0.5) 22 4(00) 6.36(0.01) 2 65(0.00)
02 025 263.9(1.3) 1929(Q1.1) 83.900.7) 22 100y 6.38(0.01) 2 68(0.00)
05 263.7(29) 188.2(0.8) 80 9(0 6) 21.9(0.1) 631(0.01) 2.63{0.00)
075 258.6(1 8) 180.4(0.9) 77 90 6) 21,10 1) *6 05(0.01) 2.54{0.00)
0 283 2(1 4y 244.4¢0.6) 152.6(0.8) 47.3(0.3) 8 10{(0.02) *2.17(0.01)
05 0.25 284 3(1.7)  246.7(2.1y 155.3(L.T) 48.4(0.1y 8.39(0.03) 2.24(001)
0.5 285 3(2.6) 243.2(1.0) 148.1{0.8) 46.8(0.5) B.50{0.06) 2.24(001)
0.76 281.7(1.6) 237.5(1.3) 135.8(L.4 45.2(0.4) 8.40(0005) 2.18(0 00)

Symmetric Shift

r c 7.=01 7.=0.2 7.=0.4 n.=08 .= L6 n.=32
0 246.9(1 3) 159.2(0.9) 620(0 2) *18.7(0.0) 7.06(001) 5.33(0.00)
N1 0.25 225.8(13) 1292005 *51.6(03) 19900 1)  8.94{0.01) 4.44{0.00)
.5 213.1(0.9) *118 7(0 6) 53.5(0.1) 24 1{0.0) 11 53(0.01) 5.84(0.00)
0.75 *206 50 9)  124.3(0.3) 64.4(0.2) 32.3(0.0) 16 23(0.01) 8.32(0.01)
0 271.6(0.6)  200.8{0.7) 88.9(0 5) 22.7(0 1} *6.36{0.01y 2.69(0 00}
0.2 0.25 244 9(1.8) 155.8(1.1) 59.2(0 2) 18.7{0.0)  7.35(0.01) 3.51(0 00}
Q0.5 227.3(1.3)  129.7(0.3) 52.1(0.2) 20.5(0.0y  9.26(000) 4690 01)
75 208.3(0.3) 119.6{0.5) 56.4(0.1) 26.6(0.00) 12.93(001) & 56(0 00)
Q4 284 7(0.7)  246.8(0.8) 154.2(0.5) 4810 3) 8.200.02) *2 15(0.00)
05 025 271.8(1.9)  204.1(1.9) 92.8(0.8) 2350 1) 6.36(0.02) 2 63(0 00)
0.5 250.3(2.6) 163.3(009) 63 0(0.2) 18900 1y 7 13(0.02) 38.34{001)
0.75 222.6(0.3) 1268(11) 51.8(0.1) 2090 0)  9.50(0.02) 4.71(0.01)

Only Shift

r c 7. =0.1 7.=02 n.=04 n-=08 n.=16 n.=3.2
0 248 3(1.0) 158.6(0.9) 61 8(0.3) *18.6{0.1) 7.07(0.01) 3 35(0.01)
01 0.26 228 1(1.1) 133.7(27) *562.3(0.9) 19.7(0.2)  8.51(0.28) 4.15(0.19)
0.5 216.6(2.8) *122.9(2.8) 53.6(0.4 22.8(0.8) 10 26(0.80) 4.97(0 51)
075 *210.7(2.1)  126.1(1.5) 62.0(1 5) 28.3(2.5) 12,72(2.04) 6.00{1.23)
0 267.2(1.7y  1994(0.9) 88.6(06) 22 5(0.1) *6,35(0.02) 2.69(0.00)
02 025 247 8(1 8)  160.0¢3 6} 62 4(2.1) 19.2(0.2) 71713y 3.33(012)
0.5 230.3(4.2) 137.0{6.7y 54 7(2.2) 20.6(0.1) 8 62(0.41) 4.02(0.35}
0.75 217.1€4.9)  126.1(4.7y  58.0(1.2) 25.5(0.7} 11.05(1.20) 5.00(0.88)
0 283.8(1.2)  244.0(1.1) 153.3(1.4) 47.3(0.1) 8.10(004) *2.18(0.01)
0.5 0.25 272.0(3.8) 209.8(6.8) 100.5(62) 258(1.7) 657016y 2.56(0 05)
05 255.5{3.2) 173.1(7.5) T0.452)  20.7(1.2) 7260007y 3.12(0.16)

0175 231.004.5) 139.1(7.4) 57 7(3.9) 22309  935(0.14) 4.05(0 43)
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Table 4. ARls of general MEWMAs using 4 of in—control ARL = 300 for steady state
processas of 2= 4 n Only Shift.

7: r £ N-8 N-5 MN-2 P2 -5 P8
0 1581 165.8 166.5 156.3 154.6 156.3
0.1 .25 1331 131.6 151.7 127.5 125.1 124.7
Q.5 119.3 1191 118.8 115.6 113.3 1125
0.75 114 6 114 8 114 & 1153 2 111.3 111.4
0 19790 196 1 1958 193.6 194.7 196 9
0.2 0.2 0.25 163.4 1617 159 2 1559 1525 1518
0.5 138.9 138.2 136 4 130 5 1271 1261
075 1238 122.5 1227 116.3 1131 1127
245.1 242.1 241.9 245.2 245 6 245 2
0.5 025 218.4 214.9 2131 202.9 201.8 2007
182.4 181.7 176.2 165.1 162.1 160.0
075 144.6 143.4 139.8 130.8 126.5 125.2
0 6.6 6.7 6.6 6.6 6.6 6.6
0.1 (.25 7.6 7.6 7.6 8.0 8.1 8.2
0.5 85 8.6 8.7 9.6 10.1 10.5
0.75 93 94 9.6 11.4 12.6 135
0 6.1 6.1 6.1 6.1 6.1 6.1
1.6 0.2 0.25 6.6 66 6.6 6.8 6.9 69
0.5 7.5 76 7T &1 84 8.6
0.75 87 8.8 9.1 10.4 11.2 1.7
0 80 8.0 8.0 7.9 8.0 8.0
0.5 0.25 6.5 6.5 6.4 6.2 61 6.1
5 5.9 6.9 6.9 6.8 6.8 6.8
075 8.3 8.3 8.5 8.7 3.8 8.9

Since the processes i QC practice are often away from the in-contrel values
due to start-up problems or the ineffective control action for the previcus signal, a
FIR feature of the charts 1s important. Next, the ARIL properties of general
MEWMA charts are examined for out-of-control processes in the 1nitial state. This
experiment is conducted in the same way with the previous one except using the
control limit of in-control ARL = 100. Tables 5 an 6 contain the estimated values
of threchold A and ARL. Like for the steady state process, a diagonal smoothing
MEWDMA chart can be designed equivalently for a same in-control ARL regardless
of the correlation characteristics of the measurements and its ARL 1s only depen-
dent on the value of noncentrality parameter. When ¢ > 0, the control limats is not
much different over the correlation types to generate the same in-control ARL,
but the performance changes over the correlation types in Only Shift and varies
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1n the shift directions of the mean vector. These variations are not substantial for
relatively large shifts with r = 0.1. As illustrated in Table 6, the scheme appears
to always have shorter ARLs for smaller rs and larger cs in all the durection of the
shift, and the ARL performance is then best with » = 0.1 and ¢ = 0.75 for all the
situations considered. When shifting a small distance, the ARL is reduced by us-
ing the nondiagonal components in Symmetric and Only Shifts more than in
Equal Shift. It is reverse for a large shift.

Table 5. As of in—control ARL = 100 far general MEWMAS for [nitial state processes of p= 4,

r C N-8 N-5 N-2 P2 P-5 P-8
0 10.99 10.99 10,99 10.99 10.99 10.99 .

01 0.25 9.80 9.80 9 80 9.80 981 9.82

0.5 9.01 8.99 8.97 898 8.99 9.01

0.75 8.32 8.32 833 835 8.33 8.35

0 12.13 12,13 12.13 1213 12.13 12.13

0.2 0.25 11.12 11.15 11.14 11.14 11.13 11.13

06 10.23 10.24 10.25 10.22 10.23 10.24

075 9.40 9 40 9 40 9.41 9.40 9.38

0 13.11 1311 13 11 13.11 13.11 15.11

0.5 0.25 12.48 12 49 12.50 12.50 12.52 12.50

0.5 1173 11.71 1174 11.73 1175 11.74

0.75 10.79 10.79 10.77 10.79 10 81 10.82

Although the EWMA charts can be designed give a quick signal for a small
shift in mean, Yashchin [15] remarked the “inertia” problem of the EWMA chart
schemes that are likely to reacting slowly to outhers. The general MEWMA chart
can be subject to the same problem, that was discussed for the MEWMA chart by
Lowry, Woodall, Champ and Rigdon [9]. We can provide a Shewhart rule in the
MEWMA chart procedure to protect against outliers. As they mentioned, however,
there will be a trade-off between protection against inertia and quick detection of
small shifts when using the combined Shewhart EWMA control scheme.

From the results of the previous analysis, we can conclude that the best chart
scheme is designed with the total smoothing weight r = 0.1 among our cases. Ta-
bles 7 and 8 display the ARL results of the general MEWMA charts using r = 0.1
with fixed values of h over different correlation structures for p = 2, 4, 10. These
results provides useful information for designing a general MEWMA chart ac-
cording to the quality characteristics with Tables 2 and 5. In the next section, the
mvestigation of the ARL performance for general MEWMA charts will be extend-
ed by comparing with the other multivariate QC charts.
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Tabla 6. Averages{standard deviaticn) of ARLs of general MEWMAs for six correlation types
using A of in—control ARL = 100 for initial state process of p=4

P Egual Shift

7 c n.,=01 n =02 7.=04 n =08 n.=146 7.=3.2
0 88.8(0.3) 66.0(0.2) 32.900.2) 12.2(0.00 4 51{0.01) 1 897(.00)
01 025 86.0{0.2) 61.90.4) 29.6(0 1) 10.900) 4 14(0.00) 1.85(0 00)
0.5 84.2(0.6) 58.1(0.5) 26 6(0.1) 9.9(0.0) 3 87(0.01) 1 76(D.00)
075 *81.4(0.8) *53.4(0.2) *24.0(0 1) *9.1(0.0) *3.65(0.01) *1.68(0.00)
(] 92.2(0.2) 74.5(0.4) 41.000 1) 14.1{0.0)  4.73(0 00)  1.99(0.00)
02 0.25 91.4(0.2) 72.0{0.2) 38.7(0.2) 13 2(0.1)  4.46(0.01)  1.90(0.00)
0.5 90 5(0.4) 69.1(0.3) 35.3(0.2) 120{0.0) 4.18(001) 1.81(0.00)
0.75 87 7(0.6} 64 9(0.4) 31.2{0.1) 10800y 3900 01) 1.73(0.00)
0 96.5(0 5) 86.9(0.2) 59.9(0.2} 25600 5.76(0.03) 1.84{0.00}
0.5 0.25 96.7(0 5) 86.6(0 2) 59.2(0.2y 23.1(0,1) 5.70(0.05) 1.83{0.00)
0.5 95.7(0.6) 84.8(0.4) 56.4(0.3) 21.6(01) 538(0.04) 177(0.000
0.75 95.0(0.6) 82.3(0.5) 52.3(0.4) 19.2(0 )  4.87(0.08)  1.68(0.00)

Symmetric Shift

7 c 77.=0.1 n. =02 7.=04 n, =08 n.=186 n.=38.2
0 88.4(0.3) 66.5(0.4) 38.1(0.2) 12.1(0.0 4 50(0.01) 1 98{0.00)
0.25 23.700.1) 58.2(0.2) 28 2(0.1) 10.900.0) 4 2400.01) 1 90{0.00}
01 05 80.6{0.4) 53.9(0.5) 26,000 1) 10.2(0.0)  4.01¢0.003  1.83(0 00}
0.75 *77.3(0.6)  *50.5(0.2) *24.3(01) *9.6((0.0) *3.81(0 00} *1.76(0.00)
0 92.6(0.3)  75.1{0.3)  41.1(03)  142(0.0) 4.71(0.015  1.99(0 00}
0.2 0.25 87.9¢0.4)  65.1¢0.3)  32.3(0.2)  1Z.1(0.0} 4.55(001) 2.00(0 00)
05 B4.3(0.4) 58.7(0 4) 28.8(0.1) 11 3¢0.0y  4.38(0 D1)  1.95(0.00)
0.75 80 8(0D.5) 53 9(0.2) 26.6{0.1) 1060 0) 4.15(0 01y 1.88(0.00)
0 96 7(0 3) 86 9(0 2} 60.6(0.2) 23 8(0 1}  5.74(0.02)  1.85(0.01)
0.5 0.25 93.1(0. 76.1(0.6} 42.5(0.2) 5000y 477(0.01)  2.00(0.00)
0.5 89.0(0.2) 66.7(0.3) 33.6(0.1) 12.5(0.0) 4 66{0.01) 2 03(0.00)
0.75 84.7(0.5) 58.7(0.3) 29.1(0.1) 11.6(0.00  451{0.01) 1 98(0.00)

Only Shift

r c n.=01 n.=0.2 7.=04 n.=0.8 .= 16 .= 3.2
0 88.4(0..2) 66.0(0.2) 32 8(0.1) 12.0(0.0) 449(0.01) 1 97(0.00)
0.1 0.25 84.3(0.7) 58.7(0.8) 28 2(0.1) 10.9(0.1) 4 22(0.02) 1.89(0.01)
05 81.3(0.6) 54.2(0.6) 26.000 1) 10.1(0.1)  3.99{003) 1.81{001)
075 *TTA0.2)  *50.2(0.2) *24.1(0.1) *B.5(0.1) *3.78(0 03) *1.74(0.01)
¢ 02.6{0.3) 75.040.3) 40.9(0.1) 14.1{0.9y 4710 01y  1.99(0.00)
02 0.25 88.6(0.6)} 65 9¢0.8) 33.1{0.6) 12 2¢0.2y  4.53(0.02) 1.98(0.01)
0.5 85.3(0 9) 60.0(1 4) 29.5(0 6) 11400 1) 4.33(003) 1.92(0.02)
0.75 81.7(0.9) 55 1(1.1) 27.1(0.4} 10.6(0.00  4.10(0,04) 1.84(0.02)
0 97.1(0.2)  B86.7(0.3)  60.0¢0.Z)  23.7(0.1)  5.72(0.03) 1.84{0.00)
0.5 0.25 93.0(0.8) 77.5(1.8) 44.6(1 8} 15.5(07) 4890007 1.96(0.02)
0.5 90.5(1.0) 69.5(2.1) 36 2(1 9} 13.3(0.6) 4 74(0.05) 198(0.03)
0.75 86 4(1.1) 81.7(2.1) 312014y 12 3(0.5) 4 586(0.02) 192(0.04)
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Table 7. In—control ARLs of the general MEWMAs of r= 0.1 for various #value in steady state.

p=2 p=4 p=10
[ A N-5 P-5 h N-5 P-5 h N-5 P-5

0 70 100.0 1000 10.7 998 998 201 994 994
10.8 B507.9 5079 152 5002 5002 258 5011 5011
0.25 6.6 1012 102.2 9.3 1009 1012 15.4 1006  99.6
104 4972 5031 141 5005 502.3 225 5059 506.9
0.5 &1  99.0 1005 B.0 996 99.1 11.6  100.1 1000
100 4961  500.8 13.0 4960  493.8 198 5008 500.0
0.75 5.6 999 1013 6.7 1013 1016 84 1007 1005
9.5 4972 4987 118 5018 3009 16.6 5046 505.3

Table 8. In—control ARLs of the general MEWMAs of r= 0.1 for various A values in initial state.

p=2 p=4 p=10
¢ h N-5  P-5 h N5 P5 A N5 P5

0 9.7 3079 307.9 14.0 3049 3049 244 3068 3068
10.8 4941 4941 15.3 B507.56 5075 25.9 4987  498.7
0.25 93 3018 3011 129  302.8 3026 209 2610 2623
105 4983 507.1 143 5035 507.5 230 4993 4977
0.5 9.0 3024 306.4 12.1 3032 3019 19.7 3024 304.3
101 490.0  495.0 13.4 5002  498.3 213 508.3 509.0
0175 8.6 3008 3073 1.2 3004 3000 184 3063 3040
9.7 4926 4958 12.5 506.8 4978 19.7 4976 4964
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4. COMPARATIVE PERFORMANCE OF MEWMA CHARTS WITH GROUP
CUSUM CHART

One approach for controlling multivariate normal processes utilizes a control
chart based on a multivariate statistic that involves information on the depen-
dence between separate measurements. The MEWMA chart of a diagonal
smoothing matrix was made comparison of ARL performance with the multivari-

ate control charts, the Shewhart z* chart and two multivariate CUSUM chart,

by Lowry, Woodall, champ and Rigdon [9]. These multivaniate CUSUM charts
proposed by Pignatiello and Runger [11] employs the Hotelling statistic [7] in an
umvariate CUSUM procedure. Another approach to CUSUM control for multi-
variate processes 18 the proposal of Woodall and Neube [14]. [t operates a group of
individual univariate CUSUM charts of all the variables simultaneously and a
signal 18 grven if any of the chart in the group exceeds its control limits. The in-
terpretation of this group chart is simpler than that of the other multivariate con-
trol charts, since the signal instantaneously identifies with the out-of-control
variable. Woodall and Ncube [14] and Hawkins [6] also suggested to apply the
group approach to a linear transformation of the orginal variables. The ARL per-
formance comparison between the group CUSUM charts and the multivariate
control charts are presented in (Pignatielloc and Runger [11]; Chor and Lee [1]).
This study investigates the relative ARL performance of the general MEWMA
charts and the group CUSUM charts.

Woodall and Ncube [14] described how a p component multivariate normal
process can be monitored with p two-sided univariate CUSUM charts. Assume
the zero in-control mean vector and the normalized covariance matrix such as our
case. If x,, is the observation on the ith varable at time n. the ith univariate

CUSUM is operated for a given reference value k& > 0 by forming the cumulative

Sums

Uﬂ.,l = max(O, Un—l,i + xn,z - k) (7)
and

n,z

L,,=min(0, L, +x,, +k) (&
for n.=1, 2, --- and the group CUSUM chart then signal when

max [max (U, ,,—L,;)]>h ¢2)

13
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for a given threshold &. With the idea that departures from control in multivari-
ate processes may be expected to affect only a minority of the variables, Hawkins
[5, 6] proposed using the vector of scaled residuals from the regression of each

variable on all the others. Realization rm bold x, is transformed to the regres-

swon-adjusted vector

7, = [ diagonal(>, )T/ 251 X, (10)

The principal component analysis for successive multivariate measurement
provides the possibility of separate control of the individual variables of a multi-
variate normal process (Woodall and Ncube [14]; Jackson [4]; Pignatiello and
Runger [11]). The normalized principal component vector is obtained by the spec-
tral decomposition of the covariance matrix:

w, =4 wx, (11)

where 13 the matrix of eigenvectors and A the diagonal matrix of eigenvalues
associated with w. The group CUSUM charts, MCZ and MCW apply Z, and w,

respectively to the procedures of (7), (8) and (9).

In this section, the ARL performance of the general MEWMA charts with r =
0.1 1s examined for p = 2, 4, 10 including the comparigon to that of the group
CUSUM charts. The comparison are made for the out-of-control condition in both
the imitial and steady states using two correlation types of different claass by
shifting a distance in the mean vector in two extreme directions of Equal and
Only Shifts. The control schemes are designed to give an out-of-control signal
when the test statistic is greater than the threshold & of in-control ARL = 300 in
the steady state and in-control ARL = 100 in the 1nitial state. Table 9 contains A
values used for the group CUSUM charts, and the values for the MEWMA chart
can be found in Tables 2 and 10. As in the previous section, all the threshold were
estimated such that the chart results in having the specified in-control ARL for
the in dependent 10,000 simulation runs. The reference values of the group charts
are set to 0.5, a half of the standard deviation of an individual variable for the
cumulative sum statistics under our assumption of the normalized covariance
matrix. As shown in Cho and Lee [1], the ARL performance of MCZ is beat when
only a single component of the multivariate mean vector is shifted, and MCW
gives the shortest ARL for the equal amount of noncentrahty distance when all
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components of the mean vector 1s equally shifted. In this study, we consider MCW
for Equal Shift and MCZ for Only Shift as a group chart in this section. All the
results are obtained by simultaneously operating the chart to an identical process
1 each run of independent 10,000 simulations respectively for the six distance
levels. Tables 11 and 12 display the comparison results for the out-of-control
process in the steady and initial states respectively. As shown in these table, the
group charts MCW and MCZ appear to offer better protection to detect relatively
larger shifts in the mean vector of the process than the MEWMA charts in the
steady state for some situations: MCW if all the variables are positively correlat-
ed and simultaneously changes, and MCZ i1f the shift occurs in one of the vari-
ables. Otherwise, one of the nondiagonal MEWMA chart schemes gives the short-
est ARL for the simulated identical processes. It is seen that the ARL perfor-
mance of the MEWMA charts can be improved more dramatically for higher di-
mensions when initially shifting along the direction of just one variable in the
process mean.

Table 9. Avalues of in—control ARL = 300 in steady stata (in—control ARL = 100 in nitial
state ) for the group CUSUM charts for multivariate normal process.

MCZ MCW
r N-5 P-5 N-5 P-5
2 5.19(4 08} 5 20{4.08) 5.25(4.14) 5.25(4.18)
4 5 90(4.77) 5.90(4.76) 5.90{4.81) 5.90{4.78)
10 6.81(5.68) 8 81(6.68) 6.83(5.69) 6.81{5.69)

Table 10. Avalues of in—control ARL = 300(n—control ARL = 100 in imitial state) for the
general MEWMAS of 7= 0.1 for multivariate normal processes.

c=0.0 c=0.25 c=0.5 c=0.75
P N-6 P-5 N-5 P-5 N-5 P-5 N-5 P-5
2 959 9.60 9.20 9.21 8.77 8.79 8.26 8§24
(7.14) {7.14) (6.77) (6 76) (6.39) (6.43) (6.06) (6 09)
10 2409 24.09 20.32 20 36 17.47 17.35 13 82 13.84
(20.29) {20.29) {17.06) (17 03) (15.55) (15 59) (14 5%  (15.00)
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Tahle 11. ARL performance comparison using /2 of n—control ARL = 300 for identical multi—
variate normal processes in steady stats.

Equal Shift |
N-0.5 P-5
MEWMAof r=01 MEWMA of r=0.1
r 0 MCW  ¢=0 ¢=023 ¢=05 ¢=075 MCW  ¢=0 ¢=025 c=0.5 ¢=0.75
0.1 259.5 2295 2269 2238 ~220.4 2549 2307 2285 2251 *219.7
0.2 1699 1330 1296 1248 *121.8 167.8 1340 130.3 127.0 *121.3

2 04 61 4 478 46.7 45.5  *44.3 60.5 47.8 46.6 456 %442
0.8 159 152 16.0 147 *14.3 15.9 15.4 15.1 149 *l44
16 *55 6.0 5.9 5.8 5.7 *3 6 61 6.0 5.9 8.7
3.2 *2.5 2.9 2.8 2.8 2.7 *256 219 2.9 2.8 2.9

0.1 2657 247.1 2422 2400 *233.3 2644 2479 2418 2392 *234.3
0.2 1964 1592 1539 1476 *142.1 1873 1581 133.3 1482 *141.6

4 04 88.3 61.3 50.2 37.3  *54.3 720 6l 4 58.9 57.4  *38.7
0.8 24 5 18.6 18.3 17.9  *16.9 178 18 6 18.3 18.0  *16.9
1.6 8.2 7.1 7.0 6.8 *6 4 *6 1 71 7.0 6.8 64
3.2 37 3.3 3.3 3.2 *30 *27 3.3 33 3.2 3.0

01 284.8 2722 2655 2644 2365 2780 2708 2674 2647 *259.5
0.2 238.3 201.0 1932 1925 *18046 2211 2029 1982 193.0 *182.1

10 0.4 136.6 B88.4 83.4 §9 4 *79.3 90.0 88.4 89.1 89.2 *80 2
0.8 44.2 25.53 27.2 26 8 *232.9 *20 6 251 271 26.7 227
16 13.5 9.0 9.3 88 *7 8 *6 9 9.0 9.3 88 78
3.2 5.8 4.2 4.1 3.9 *35 *3 1 4.2 41 39 3.5
Only Shift
N.05 P-5
MEWMAofr=01 MEWMA ofr=01

P MCW ¢=0 ¢=025 c¢=05 c=075 MCW ¢=0 ¢=025 c=08 c=0.75
0.1 246.7 2307 2256 2195 *2136 249.3 2302 2198 2108 *1995
0.2 156.9 1340 1268 1206 *115.8 156.3 134.0 1214 1127 *108.7

2 04 56.7 47 8 45.7 447  *45.2 57.4 47.9 443 *44.3 48.1
0.8 *15.4 154 15.4 15.6 16.1 154 *15.3 15.8 17.3 20.5
1.6 *5.4 6.1 62 6.3 6.5 *55 6.1 6.7 7.6 9.1
3.2 2.5 2.9 3.0 3.0 3.1 *2.5 2.9 3.3 37 4.3

0.1 2650 2488 2293 2180 *2123 263.1 247.1 2264  213.7 *208.7
0.2 1836 1576 1358 *1254 127458 184.1  159.0 1310 *1194 1243

4 04 709 621 *53.1 53.9 606 69.2 62.0 *51.2 530 63.6
0.8 17T 18.7 19.5 22.0 259 *17.7 18.6 19.9 23.6 30.8
1.6 61 7.1 8.2 9.5 10.8 *8.1 7.1 4.8 11.1 14.8
3.2 =23 3.3 4.0 4.5 4.9 *2.8 3.5 4.3 5.5 7.2

01 2773 270.0 2349 *2336 2353 2723 2676 235.0 *229.1 2345
0.2 218.5 2026 1482 *1479 162.0 2141 1963 *1443 1453 1616
10 04 89.2 88.4  *66.9 76.9 92.1 881 88.7 *65.4 76.0 93.3
0.8 *20.6 25.1 29.0 374 46.2 *20.5 252 29.0 38.3 498
1.6 *6.9 9.0 13.4 175 211 *6.9 90 139 19.2 255
3.2 *3.1 4.2 6.5 82 9.3 *3.1 432 70 98 129
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Table 12. ARL performance campanson using /7 of in—control ARL = 100 for identical multi—
variate normal processes in initial state.

Egqual Shift
N-0.5 P-a
MEWMA of r=0.1 MEWMA of r=10.1
P 1. MCW c¢c=0 ¢=025 c=058 ¢=0753 MCW ¢=0 ¢=025 ¢c=05 c=0.75
0.1 900 85.0 84.3 816 *801 90.3 854 84.5 838 *Bl.6
02 69.3 657.6 56.5 541 *517 69.7 57.6 56.2 548  *52.7
2 04 35.5 26.9 25.7 244 *231 35.3 26.8 25.6 248 *23.4
0.8 12.0 98 94 9.0 *8.6 12.2 9.9 95 9.1 *87
1.6 4.5 3.7 3.6 3.5 *33 4.5 2.8 36 3.5 *3.4
3.2 2.1 1.7 1.6 1.6 *1.5 2.1 1.7 16 1.6 *1.5
01 94.0 88.5 86.3 83.5 *80.7 92.6 88.7 86.1 844 *819
0.2 78.3 65.9 61.8 57.9 *53.4 76.1 66.2 62.3 581  *53.1
4 0.4 45.6 329 29.6 26.5 *23.8 41.3 33.0 29.6 26,7  *24.1
08 17.5 12.1 10.9 9.9 *9.1 13.8 120 10.9 9.9 *9.1
16 6.6 45 41 39 *34 3.1 4.8 4.2 3.9 *3.7
32 3.0 2.0 1.9 1.8 *1.7 2.3 2.0 1.9 18 *1.7
0.1 95.8 91.6 90.0 87.4 *B28 96.6 92.6 904 88.8 *84.7
0.2 86.4 4.4 69.2 62.2 *56.2 85.0 75.4 691 63,5 *56.2
10 0.4 60.5 41.6 35.9 30.2 *25.8 50.3 11.9 35.9 3056 *26.1
0.8 26.6 16.0 13.1 11.3  *10.2 16.6 159 13.0 113 *l0.2
1.6 10.3 5.8 5.0 4.5 *4.2 5.9 5.8 5.0 4.5 *42
3.2 47 245 2.2 2.1 *2.0 29 25 2.2 2.1 *20
Only Shift
N-05 P-5
MEWMA of r= 0.1 MEWMA of r=0.1
P 7. MCW ¢=0 =025 ¢=05 ¢c=075 MOW e=0 =025 c=0.5 e=0.75
0.1 89.9 85.2 839 80.8 *79.3 891 84.3 821 81.2 *79.1
0.2 67.9 57 6 55.9 527 *0.9 67.6 577 549 52.4 *50.3
2 04 338 26.4 252 238 Y228 33.6 26 3 247 239 *23.2
0.8 11.6 98 9.4 9.0 *8 6 11.6 98 95 9.2 *8.9
16 4.4 3.7 36 3.5 *34 4.4 37 56 38 *3.5
3.2 2.1 1.6 16 16 *15 2.1 1.6 146 1.6 *1.6
0.1 93.0 89.0 85.7 825 *79.2 92.6 89.0 8§4.7 81.9 *78.8
0.2 T4.8 67.0 59.9 55.9 *51.6 74.9 66.6 59.0 55.0 *50.9
14 0.4 40.5 329 28.7 26.4 *24.3 40.0 330 28.3 259 *24.2
0.8 13.7 12.1 11.0 10.2 *9.56 13.6 12.1 11.0 10.3 *9.6
18 5.1 4.5 4.2 4.0 *3.8 5.1 45 4.2 40 *3.8
3.2 2.3 2.0 19 1.8 *1.9 2.3 20 1.9 i8 *1.8
01l 96.1 91.8 85.8 816 *75.0 95.2 91.3 84.7 813 *74.1
! 02 83.5 74.5 6l.1 54.3 *48.7 825 74.4 50.0 53.8 %482
10 0.4 49.1 41.3 3L0 27.1 *24.4 48.7 41.8 30.9 272 %243
08 16 4 15.9 13.0 11.5  *10.4 16.3 16.8 129 11.5 *105
1.6 59 5.8 5.1 4.9 *4.4 5.8 58 51 4.7 *44
5.2 27 25 23 22 *2.1 27 2.5 23 22 *2.1
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5. CONCLUSIONS

This study suggests a new approach that uses a multivariate EWMA tech-
nique for controlling the mean of multivariate normal processes. It is an exten-
sion of the MEWMA chart procedure of Lowry, Woodall, Champ and Rigdon [9] by
using a general matrix for the smoothing weight coefficient instead of a diagonal
one. Our results show that the MEWMA chart with a full smoothing matrix has
superior ARL performance over the diagonal chart scheme for a small shift in the
mean vector when departures from control are delayed. It is also attractive in
many real applications that process initially breaks out into the out-of-control
condition. In this situation, the improvement of the ARL performance is shown to
be more pronounced with using the nondiagonal smoothing components in the
MEWMA chart procedure not only for a small shift, but for a large change from
the in-control mean. The MEWMA chart scheme with a smoothing matrix of ap-
propriate nondiagonal elements demonstrates outstanding performance especially
for a small mean shift and is very receptive if the process is initially out-of-control.

The group CUSUM charts MCW and MCZ performs better than the MEWMA
charts under a certain QC environment with a large shift in mean. Since the
physical meaning of the EWMA vector is not clear, it is difficult to find an inter-
pretation in terms of the original variables for a given out-of-control signal. If one
is interested in detecting a shift in the mean of only a particular variable or iden-
tifying the out-of-control varable when the shift in the process mean occurs along
one of the original variables, the MCZ chart scheme is recommended.

Whereas the diagonal scheme of MEWMA is directionally invarnant, the ARL
performance of the nondiagonal smoothing scheme is sensitive on the directional
change of the shift and has a variation in different correlation measurement
characteristics, thereby the resulting in complicating the chart design. Using
nondiagonal components for the smoothing matrix also requires computational
complexity, however, it offers a practical advantage of improving the performance
in detecting a shift in the process mean.
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