mGA의 혼합된 구조를 사용한 퍼지 모델 동정

Fuzzy Model Identification using a mGA Hybrid Schemes

  • 주영훈 (군산대 공대 전자정보공학부·) ;
  • 이연우 (군산대 공대 전기전자제어공학과) ;
  • 박진배 (연세대 공대 전기컴퓨터공학과·)
  • 발행 : 2000.08.01

초록

This paper presents a systematic approach to the input-output data-based fuzzy modeling for the complex and uncertain nonlinear systems, in which the conventional mathematical models may fail to give the satisfying results. To do this, we propose a new method that can yield a successful fuzzy model using a mGA hybrid schemes with a fine-tuning method. We also propose a new coding method fo chromosome for applying the mGA to the structure and parameter identifications of fuzzy model simultaneously. During mGA search, multi-purpose fitness function with a penalty process is proposed and adapted to guarantee the accurate and valid fuzzy modes. This coding scheme can effectively represent the zero-order Takagi-Sugeno fuzzy model. The proposed mGA hybrid schemes can coarsely optimize the structure and the parameters of the fuzzy inference system, and then fine tune the identified fuzzy model by using the gradient descent method. In order to demonstrate the superiority and efficiency of the proposed scheme, we finally show its applications to two nonlinear systems.

키워드

참고문헌

  1. M. Sugeno and T. Yasukawa, 'A Fuzzy Logic Based Approach to Qualitative Modeling', IEEE Trans. Fuzzy Sys., Vol. 1, pp. 7-31, 1993 https://doi.org/10.1109/TFUZZ.1993.390281
  2. S. Horikawa, T. Furuhashi and Y. Uchikawa, 'On Fuzzy Modeling Using Fuzzy Neural Networks with the Back-Propagation Algorithm', IEEE Trans. On Neural Networks, Vol. 3, No. 5, pp. 801-806, 1992 https://doi.org/10.1109/72.159069
  3. J. S. Jang, 'ANFIS: Adaptive-Network-Based Fuzzy Inference Systems', IEEE Trans. System, Man and Cybernetics, Vol. 23, No. 3, pp. 665-684, 1993 https://doi.org/10.1109/21.256541
  4. Y. H. Joo, H. S. Hwang, K. B. Kim and K. B. Woo, 'Linguistic Model Identification for Fuzzy System', Electronics Letters, Vol. 31, No. 4. pp. 330-331, 1995 https://doi.org/10.1049/el:19950163
  5. Y. H. Joo, H. S. Hwang, K. B. Kim and K. B. Woo, 'Fuzzy System Modeling and Its Application to Mobile Robot Control', Fuzzy Logic and Its Applications to Engineering, Information Sciences, and Intelligent Systems, Kluwer Academic Publisher, pp. 147-156, 1995
  6. Y. H. Joo, H. S. Hwang, K. B. Kim and K. B. Woo, 'Fuzzy System Modeling by Fuzzy Partition and GA Hybrid Schemes', Fuzzy Sets and Systems, Vol. 86, No. 3, pp. 279-288, 1997 https://doi.org/10.1016/S0165-0114(95)00414-9
  7. K. Shimojima, T. Fukuda and Y. Hasegawa, 'Self-Tuning Fuzzy Modeling with Adaptive Membership Function, Rules, and Hierarchical Structure Based on Genetic Algorithm', Fuzzy Sets and Systems, Vol. 71, pp. 295-309, 1995 https://doi.org/10.1016/0165-0114(94)00280-K
  8. F. Hoffmann and G. Pfister, 'A New Learning Method for the Design of Hierarchical Fuzzy Controllers Using Messy Genetic Algorithms', Proc. IFSA'95, 1995
  9. L. A. Zadeh, 'Fuzzy Sets', Int. Jour. of Information control, vol. 8, pp. 338-353, 1965
  10. R. M. Tong, 'The Evaluation of Fuzzy models Derived from Experimental Data', Fuzzy Sets & Systems, Vol. 4, pp. 1-12, 1980 https://doi.org/10.1016/0165-0114(80)90059-7
  11. K. Deb and D.E. Goldberg, 'mGA in C: A Messy Genetic Algorithm in C', IlliGAL Report No. 91008, 1991
  12. D. E. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning, Addison-Wesley, 1990
  13. D. E. Goldberg, B. Korb, and K. Deb, 'Messy Genetic Algorithms: Motivation, Analysis, and First Results', Complex Systems, Vol. 3, No. 5, pp. 493-530, 1989
  14. F. Hoffmann and G. Pfister, 'A New Learning Method for the Design of Hierarchical Fuzzy Controllers Using Messy Genetic Algorithms', Proc. IFSA'95, 1995
  15. M. Chowdhury and Y. Li, 'Messy Genetic Algorithm Based New Learning Method for Structurally Optimized Neuro-fuzzy Controllers', Proc. IEEE Int. Conf. on Industrial Tech., 1996
  16. H. Kargupta, 'The Gene Expression Messy Genetic Algorithm', Proc. of IEEE Int. Conf. on Evolutionary Computation, Nagoya, Japan, 1996
  17. C. Karr, 'Genetic Algorithms for Fuzzy Controllers', AI EXPERT, pp. 26-35, 1991.
  18. J. S. R. Jang and C. T. Sun, 'Predicting Chaotic Time Serie with Fuzzy If-Then Rules', IEEE Trans. on Fuzzy Systems, pp 1079-1082, 1993 https://doi.org/10.1109/FUZZY.1993.327364