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Control of Bezier Curve Shapes by Midpoint Slope Handle

Wouseok Jou' - Hyuk-soo Jang''- Tae-shik Lim''*

ABSTRACT

One of the most frequently used spline scheme in CAD and graphics package is Bezier curve. Although simple and easy
to implement, it supports diverse kinds of curves and surfaces. In view of the design convenience, the main advantage of
the Bezier curves is that they observe user-specified slope conditions at both endpoints while maintaining smoothness. This
paper expands the advantage by deriving equations for generalized Bezier curves, and applying the equation to observe
additional slope condition at midpoint. This is possible by decomposing and analyzing the user-specified midpoint slope, and
reflecting the result back into the Bezier basis matrix in parametric form. Consequently, users can control the curve shapes
not only by the endpoint slope handles but also at the midpoint slope handle, which helps them to be able to apply more
accurate control over the conventional Bezier curve shapes.

1. INTRODUCTION HD) = Z:o p: BI(D (0

Bezier was the originator of an early CAD system, i . _ . )
UNISURF used by Renault car company. The theory with Bi(f) = Cn,; 1" (19 where C..; is a
of Bezier curve is elegant and has geometric inter- binomial coefficient C,.; = n! / it(n—1)!

pretation, making it one of the most popular spline forms.
A Bezier curve p(9) of degree n can be defined in terms

of a set of control points p; (i=0,1,2,...,n) and is
given by
T4 3 9 2A0gn AFHTEY uy
A 3 Al RN afr
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Bezier derived Eq. (1) by purely geometric analysis.
But later it was known that before Bezier derived the
equation, Bernstein has already derived it by algebraic
method. The curve scheme can be characterized by the
following property:

i) In general, the curve passes through only the first

and last control point. It does not pass through the rest
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of the control points. Hence it belongs to the class of
approximating spline.

ii) The curve always resides inside the control polygon
formed by connecting control points. In other words, the
curve satisfies convex hull property.

iii) The curve is invariant under an affine transfor-
mation. Therefore applying linear transform to the
control points and rebuilding the curve has exactly the
same effect as the application of transform to every point
on the curve.

iv) The slope of the curve at the first and last control
point coincides with the control polygon. More spe-
cifically, the first derivative of an order » Bezier curve

evaluated at the control points is »n( p;— p,) and
n( p,— p,-1) respectively. For instance, the tangent

of cubic Bezier at the first point is 3(p1— o).

Among Bezier curves, cubic Bezier is most widely
used. With third order, the curve location can be
evaluated in a relatively quick time and the resulting
locality is fairly acceptable. An alternative convention
for specifying a Bezier curve is the matrix convention.
With the convention, the basis function B 7(# in Eq.
(1) can be decomposed into a row matrix and a basis
matrix which shows the characteristics of the curve.

For instance, the cubic Bezier can be represented as

follows:
-1 3 -3 1 Do
wo=te e onl] 308 e
1 0 0 0 b
(2)

In this paper, we generalize the cubic Bezier basis
matrix in Eq. (2) such that the property iv) can be relaxed
controlled. We will represent the basis matrix in a
parametric form with the parameter being the tangential
magnitude at endpoints. Furthermore, we will provide
a method to determine the parameter value by assigning
a tangent vector near middle of the curve. The remainder
of this paper is organized as follows: Section 2 provides
the review of the previous research related to the

manipulation of Bezier curve shape. Section 3 explains

how the generalized Bezier basis can be derived and
how it can be used in connection with midpoint slope
handle. Section 4 estimates and compares our method
with the original Bezier curve scheme. Finally, we

provide our concluding remarks in Section 5.

2. PREVIOUS WORKS

Cubic spline interpolation was introduced into the
literature of computer-aided geometric design by J.
Ferguson [1], while the mathematical theory was studied
in approximation theory [2, 3]. Classification and matrix
representation of the cubic spline appears in [4]. Detailed
definition and property of Bezier curve can be found in
[5-71. Control of curve shapes by the concept of bias
and tension can be found in [8-10]. In this context, the
bias parameter controls the curve behavior near the
control points. By tension, the curve between control
points can be controlled to be flat or reflexed. The
importance of this approach is that the shape parameter
is incorporated into corresponding basis matrix.

Given control points and corresponding parameter
values, the curve that passes through the control points
are known as Catmull-Rom spline or Cardinal Spline
[7,11]. Given two control points and corresponding
tangent vectors, the cubic curve that passes through the
control points are known as Hermite interpolation spline
[5,6]. The curve was generated by cxtrapolating two
additional control points to guide the curve shape. As
can be verified, Hermite spline collapses to ordinary
Bezier curve by simple algebraic manipulation [6].

Control of Bezier curve shape by assigning weight
valucs to control points can be found in [12, 13]. The
primary purpose of this approach is to assure smooth
joint connectivity between piecewise Bezier curves, but
only at the cxpense of the curve being rational Bezier
function. As for the joint connectivity, Faux and Pratt
[14] pointed out that the co-linearity of control points
near joint is too severe in practical CAD applications,
and proposed an algorithm to relax the condition for
application to Bezier surface patch. Previous researches

that manipulate Bezier curve shape has been performed



mainly in the context of the control point constraints,
and joint connectivity between piecewise Bezier curves.
In this paper, we propose a new method to control the
curve shape by specifying a tangent near middle of the

control points.

3. PROPOSED BASIS AND MIDPOINT HANDLE

3.1 Derivation of Generalized Bezier Basis

In an attempt to allow more degrees of freedom on
the curve shape, we roughly represent cubic Bezier
curves in the following form where all the clements of

the basis matrix are set to unknown parameters a .

ay ap ap ay bo

O =11 ¢ 2 ¢+ 11| 92 a= axn an P
ay axm Az Awm 123

gy Qg Qg dy by

(3)

Starting from the generalized basis matrix, we
determine relations between a;'s by selectively

applying Bezier constraints as follows:

i) Symmetry Constraints
We restrict the shape of the basis functions B ¥ (¢ )

and B3 (#) to be symmetric with respect to the center
of the parameter space. The basis functions B § (¢)
and B} (+) are also restricted to be symmetric. The

basis function of a given control point has the effect
of attracting the curve shape toward the control point
itself. By restricting this way, we can guarantee that
the curve shape is always symmetric if control points
are symmetric. Applying these constraints to Eq. (3),

we have
ap== ap., an=3 apt an,
ag=—3 ap—2an— ay,
ag= ap+ ant apt+ agp (4)
ay=— ay, ay=3ayt ay,
ay=—3an—2ay;— ay,
ay= ay+ ay+ ay+ ay (5)
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ii) Endpoint Positional Constraints

We let the curve to pass through both endpoints
exactly. For this purpose, value of the basis function
B 8 (¢ ) is set to be 1 at control point p;. Values of
the other basis functions are set to zero at the point.
Similarly, for the control point p3, the basis function
B3 (¢) evaluated at t = 1 is set to 1, and others are

set to 0. We apply these constraints to Eq. (3). If the

resulting equation is combined with Eq. (4) and (5), we

get
apy=— ap, ay=3 apt ayp,
ap=—2ap— ax,
ap=0, ap=— ap— an, ap=0 (6)
ay=—ay, ay=3ant ay,

ay=—2a,— ay+l1,

ay=0, ay=— ayn— an—1, an=1 (N

Incorporating Eq. (4)-(7) into Eq. (3), the basis matrix
of Eq. (3) can now be represented as follows: Here, each

element of the basis matrix can be represented with only

4 parameters ay;, a@p, az, and ag:
an aiy T ap
an ayp Japt ay
—an—an—1 —ap—ap —2ap— ay
0
— ap
daut ay
-2 ag;— ﬂ21+1
0 )

iii) Endpoint Tangential Constraints

Although our current basis is represented in more a
general form, ordinary Bezier basis still also meets the
requirements of the constraints i) and ii). The most
crucial difference between the ordinary Bezier basis and
our generalized Bezier basis comes from the tangential
endpoints constraints. Ordinary Bezier curves have strict
requirement that tangential magnitude must be 3 at the
endpoints. Here we will deviate from the magnitude
regulation, and let our generalized Bezier basis to be
flexible in the selection of the tangential magnitude.
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Differentiating the curve represented by the matrix

m ( p3— p3) by the intrinsic relationship between Eq.
(8) with respect to the parameter t, we get the following

(10) and (11). Consequently, our generalized Bezier basis
basis matrix:

can be represented in

terms of the single,
tangential-magnitude parameter m as follows:
3ay day -3 ayp
2[121 26122 6(112+2 ayn
—ap—an—1 —ap—an —2an— ap 2—m m —m m=2
2m—3 —2m wm 3-m 12)
-3 ay —m m 0 0
6ayt2ay 9 1 0 0 0
- 2 any— a9 + ].
The ‘i . ] The curves produced by the variation of m value is
¢ slopes of the curve represented by the basis shown in (Fig. 1) and (Fig. 2). Even if all the control
matrix (9) can be evaluated at starting and ending control
points, yielding

points remain fixed, the curve shapes can be controlled

to fit into the control polygon either tightly or loosely.
D’(O)—_—(- ay — ﬂgl_l) 15[)"'(_ ayp— aZZ) pl+

(=2 ap— an) bs+ (=2 ay— an+1) py (10 R

s

Vs
P()=2 ant+ ay-1) pp+ Q2 apt ax) p1+ .

( d12+ a22)p2+( all+ a2]+1) P3 (11)

It means that the endpoint slope can be represented
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m=3
as a function of the basis parameters and all of the control m=25
points. Linear combination of the basis parameters are {
multiplied to each control point, and the result is summed
up. In terms of the starting point slope in Eq. (10), Bezier i m=1.0
basis is a special case that the coefficients of the control

points ps, b3 are all zero such that the effects due
to the control points are nullified. Moreover, Bezier basis
is also a special case that the coefficients of p,and p,
equals -3 and 3 respectively, thus yielding the starting

point slope of 3 ( p1— py).

(Fig. 1) Variation of the Parameter m
By postulating this starting point slope as

m {(p,— py), we do generalize Bezier basis. It is
possible by setting the coefficient of p, as m, and
solving the other coefficient as a function of m. Here,
the parameter s means the magnitude of the slope
vector at the starting control point. The direction remains
the same as the ordinary Bezier curves. Nevertheless,
now the curve shape gets greater flexibility by the ability
to control the slope magnitude. If we apply the parameter

m at starting control points, the slope at the ending

Y

:‘/
g P2

control points is automatically assigned the value (Fig. 2) Variation of the Parameter m



Here, the case m = 3 corresponds to the ordinary
Bezier curve. In other words, our generalized Bezier
basis forms a set of curves which is a superset of the
curves drawn by conventional Bezier curve scheme.

Notice that, as the tangential magnitude m gets smaller,

the curve deviates earlier from the edges near endpoints. -

But still, the direction of the curve strictly follows the
endpoint edges.

3.2 Midpoint Slope Handle

The basis matrix (12) can be used to control the curve
shape by adjusting the magnitude of endpoint slope,
namely the parameter m. If it's larger, the curve will
follows the edges p, p, and p, p3 for the longer
times. The entire curve shape is changed as a result.
However, the limitation of this type of control is that
graphical users can specify the curve behavior only near
the endpoints. Often times, however, the users want to
define the curve shape by specifying a curve behavior
in between the control polygon.

Thinking backward, we claim that the user-specified
midpoint behavior can be used to decide the value of
the endpoint slope parameter m. In deriving the basis
matrix (12) from Eq. (10) and (11), we deliberately
removed the effect of ( p3— p,) at the starting control
point and ( p,— py) at the ending control point.
However, the effect of these vectors are usually
non-zero in between the two control points. In this paper,
we concentrate on the curve behavior near midpoint,
where the normalized parameter t has value of 5. At
this point, the users are allowed to specify a slope vector,
which in turn can be used to determine the endpoint
slopes. )

We differentiate the curve represented by the basis
matrix (12). Rearranging the resultant equation, we get
the slope vector S at midpoint as follows:

S=P(H=(F=2)(ps— p0)+(ZH) (1= 1))
—(E-IHar(Z)B=a+ 8 (13)

It means that the user-specified midpoint slope in the

EY 7187 HE0 T HIXIG JH [ 3023

left hand side of the equation can be decomposed by
two vectors « and f, whose direction is toward
(93— po) and ( py— p,) respectively. From the
specified slope, we solve this equation for the value of
the unknown parameter m. Taking the ratio of the first

and second term of Eq. (13), we get

(2 -2y 4
el _ 2774 =L _plal qg
18] ) B m |B|

4

Solving this equation, the unknown parameter m can

be expressed as follows:

oP2 ,," B
Midpoint
Slope Handle

S
Left Halfof B
Bezier Curve / T
A A
Poo
P
&3

(Fig. 3) Midpoint Slope Handle

Once the user specifies the midpoint slope as in (Fig.
3), the absolute value of A, B can be calculated by
estimating the vectors ( p3— po) and ( po— p,)
respectively. Let us denote the angle formed by A vector
and the midpoint slope vector as #,, and the angle
formed by B and the midpoint slope vector as &,. By
the geometry and the sinusoidal rule of trigonometric
functions, we have (e |/ {8] = sin 8, / sin 8,
The angles can be calculated by the general definition
of inner product, namely p-q = |pllg | cosé.
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Inserting these relations into Eq. (15), we have the final
relation between the slope vector and the tangential

magnitude parameter m in the basis matrix (12).

6/ ( Isin ( cos ' (B-S/IBlISD]
Isin (cos ' (A-S/1AT1ISD |

. Jl%lL + 1 (16)

In fact, the selection of the midpoint tangent drives
the production of the curve with the corresponding
tangent as shown in (Fig. 4) and (Fig. 5). As a result,
the midpoint position of the original Bezier curve may
not necessarily be maintained. What we have designated
with midpoint tangent handle is that we wish to draw
a curve with that tangent at midpoint, not that we wish

to keep the designated midpoint position.

Curve Satisfying
Slope Constraint
m=25

(Fig. 4) Midpoint Handle Example 1

/
/ Curve Satisfying
/ Slope Constraint m=2.0

(Fig. 5) Midpoint Handle Example 2

The initial midpoint tangent handle can be placed
anywhere near middle as far as the user interface is
concerned. Usually, this operation can be facilitated by

drawing the left half of the original Bezier curve and
positioning the handle at the right end, as shown in the
upper curve of (Fig. 4). Right after the slope constraint
is designated there, the curve shape and the midpoint
position changes to satisfy the given constraint.

. Therefore, the position of the midpoint used in

designating the slope handle does not affect the final
curve shape.

4. EVALUATION AND COMPARISON

4.1 Convexity
In order to obtain the convexity property, our
generalized Bezier basis must obey two conditions.

i) Sum of the weighting functions must be 1

for all values of #

In the basis matrix of Eq. (12}, the sum of the 1st
row, which is the coefficient of ¢ equals zero. Similarly,
the coefficient of #° and ¢ equals zero, respectively.
This is true for any ¢ value. Only the sum of the last
row remains, and it always equals 1. Hence our gen-
eralized Bezier basis satisfies this property.

ii) Weighting functions must always be non-
negative for all values of ¢

In order for the weighting functions B { (¢) in the
basis matrix (12) to satisfy this property, the range of
the parameter m must be limited to 0 < m < 3. The
range can be calculated by factoring inequalities of all
of the weighting functions. Notice that when our
generalized Bezier has m value of 3, it falls into the
ordinary Bezier. Therefore, if we want our generalized
Bezier basis to satisfy the convexity, the maximum
achievable tangential magnitude at endpoints is that of
ordinary Bezier basis, namely m = 3. In order to keep
convexity, this restriction must be incorporated in
designating the midpoint slope handle. (Fig. 7)
demonstrates an example of the generalized Bezier basis
when m = 1. Although the shape of each basis
function is different from (Fig. 6), the property i) and
ii) are satisfied, and convexity is preserved.



(Fig. 6) Conventional Bezier Basis

1

(Fig. 7) Generalized Bezier Basis 1

Sometimes, the convexity property is too stern a
requirement for the users to follow. Our generalized
Bezier basis provides the users with the freedom to
violate the condition ii). They can increase their design
flexibility by simply setting the parameter m to be
outside the range, yielding negative weighting functions
on some interval. A force repelling to a given control
point can be exerted. As a result, the curve shape gets
farther away from the control point and it may cross
the control polygon boundaries. (Fig. 8) shows an
example of the convexity violation with the parameter
m = 4.5, and (Fig. 7) shows a shape of the basis function
in such a case. As can be seen readily, some of the basis
functions does not satisfy the property ii) and the
negative basts function appears. However, the property
i) is still satisfied since we incorporated that condition

into the derivation of the generalized Bezier basis.

4.2 Conversion to Ordinary Bezier Curves

Our generalized Bezier curves can readily be

=T 7187 $HE0 23 HIKIo ZM MO 3025

0 1

(Fig. 8) Generalized Bezier Basis 2

(Fig. 9) Violation of Convexity

converted to the ordinary Bezier curves. By simply
moving the control point locations, the conversion can
be accomplished. In order to equate Eq. (12) with Eq.
(2), the terms containing the magnitude parameter m
must melt down into the positional matrix [ p,

b\ P2 p3 1. Rearranging and modifying the resulting

equations, we get the following vector relation:

pr= by + () (b= py)

b= by + () (p3— p) (17)

By extending the position of the control points
p1. pyinto p . p 5 along the corresponding edges
of the control polygon, the conversion is done. In other
words, if we extend the control points and draw the
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ordinary Bezier curve, the result is the same as the
generalized Bezier curve with the original control points.

4.3 Joint Conditions

The continuity condition when two piecewise Bezier
curves are joined together requires that the endpoint
slope must be continuous. This condition assures visual
smoothness near the joint when two Bezier curves meet.
Say we want to join our cubic Bezier with an arbitrary
cubic Bezier which has control points p4 to p7. Then
the continuity condition states that the control point p4
must lie on the line connecting p, to p3. That is, the
line connecting p,, p3, and p, must be co-linear.

Mathematically, this means that the incoming
direction of the first curve at the control point p3 must
be the same as the outgoing direction of the second
curve. The magnitude of the tangent does not matter.
Only the direction of the tangent matters. As long as
the outgoing tangent is a scalar multiple of the incoming
tangent, the visual continuity ~ namely G' continuity
- is maintained. From Eq. (17), we see that the tangential
direction of our generalized Bezier curve is the same
as the original Bezier curve. The only difference is in
the tangential magnitude. Therefore, we can conclude
that our generalized Bezier curve still satisfies the joint

condition without posing any problem.

4.4 Design Interface Considerations

When graphic users want to design a new curve, they
first visualize imaginary curve shape in their mind. If
they decide to use cubic Bezier curve, the only template
they can rely on is the control polygon. By the property
of Bezier curves, edges po p,and p; p;canbeagood
template to define the curve shape near beginning and
ending. But, it’s hard for them to predict the curve
behavior near the middle of the curve, since Bezier curve
belongs to the class of approximating spline. In other

words, control points p,, p, are seldom hit by the

curve. In our midpoint Bezier handle approach, they first

defineedges p, p,and p, p;toguide the curve shape
near endpoints. However, the position of p; and p,
need not be fixed yet. One thing they should keep in
mind is that the positions should better be extended along
the edges as in (Fig. 10), so that our generalized Bezier
basis could make room for more diversified shape with

the restricted parameter range of 0 < m < 3.

extended
7 ‘ control points

control points m=3

m=25

(Fig. 10) Extension of Control Points

The other thing they should keep in mind is the slope
of p; P, Ascan be seen in Eq. (13), this slope together
with the slope of p, p3 composes the midpoint slope
vector. If one slope is quite different from the other,
flexibility in specifying midpoint slope will increase.

In (Fig. 11) and (Fig. 12), the relative span of the
control angle is larger than that of (Fig. 13). In practice,
whenever the users draw control polygon as in (Fig.
13), they almost decided the direction of the midpoint
slope. On the contrary, if they draw them as in (Fig.
11) and (Fig. 12), they are expecting a wide range of
angle variation. Hence, this angular restriction is quite
natural in the user’s point of view.

Once the two control points are positioned this way,
we get additional template to define the curve shape at

the midpoint. Overall, we could control Bezier curve



shape by three handles with the proposed method. Two
handles to guide the tangential direction of both
endpoints of the curve, and one handle to guide the
midpoint slope. In practice, the midpoint slope is
incorporated in the form of the tangential magnitude at
the endpoints.

(Fig. 11) Span Example 1

(Fig. 12) Span Example 2

(Fig. 13) Span Exampie 3
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5. CONCLUDING REMARKS

We have proposed a new method to control Bezier
curve shape. Besides the conventional endpoint tangents,
the curve can now also be controlled by the midpoint
tangent handle. First, we derived a generalized Bezier
basis as a function of the tangential magnitude parameter
m, relaxing the constraints of the ordinary Bezier curve.
Second, we proved how the user-specified midpoint
tangent can be incorporated into the tangential pa-
rameter. The vector was decomposed and interpreted
into directional vectors, which were directly fed into
determining the tangential parameter. Accommodation
of the midpoint tangent did not affect the direction of
the endpoint tangents. It affects only the magnitude.
Consequently, we could control the Bezier curve shape
with three tangential handles. In using the handles, the
specified control points remains fixed and untouched.
In terms of convenience, adding a new handle means
adding additional flexibility in the design process.
Researches on the extension of our method to parametric

surface patch should follow in near future.
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