2080 SH=ZEM2(ER] =@ KT H7ZE007)

-
|
1

a8 whal I3 Z(DAG . Direeled Acyelic Graph) —'%-% A3 JYZE

EAE Ad 5 P9 B¢ F2 A7 F3gen), o ) fa
AAE 2ATY STABEE U8 DAGE ol 1= w s $4 13 T,
e AUtk B =R EAAY 24 24 $o] B4 7lAE fam AA5Y 2nAEE
dislel Hofel A% A5 Ao, 2AE BB, 45 W AT B wRolA Agku o
A SWH I} & NagelA |2 H2E a3 LRFELT A A8 5 9 A7
sl Pe A9 gaz 2dur) BgE YA95E a2 W 4Rt Eess g A

An Efficient List Scheduling Algorithm
for Multiprocessor Systems

Gyung-Leen Park' - Hyun-Seung Choo' - Jeong-Hoon Lee!

ABSTRACT

Scheduling parallel lashs, represented as a Directed Acvelic Graph (DAG) or task graph, on o mulliprocessor system bas
been an imporlant research area 1 the past decades List scheduling has been a tvpical approach for solving the problern.
List scheduling algorilbims assign prioribes to a node or an edge i an inpul DAG, and Llhen generate a schedule according
lo the assigned prionties, This paper proposes a hst scheduling algorithm with efiective methed of prionty assignments The
paper also analyzes Lhe worst case performance and optimality condilion far the proposed algoriibm. The performance compaisan
sludy shows that the proposed algonthm outperforms exisling scheduling algonthms especially [or inpur DAGs wilhh gh
commumcation overheads The performance improvement over exisling algorithms hacomes larger as Lhe input DAG becomes
mare dense and the level of parallelism n the DAG 15 mcreased.

1. Introduction uted computer sysiems are difficult and important is—
sues in concurrent processing [1-7] The precess con—
Effictent partiboning and scheduling of paraliel pro- sists of parlitioning a parallel program's tasics into clus—
grams onto processing elements ol paralle] and distrib- ters and effictently scheduling those clusters among the
processing elements of a parallel machine [or execution.
14 8 4 AFdgz Ad5A 8w 2 Once an application program is partitioncd into clusters

tt 459 AFdden 77)da 2 f&%’r'ﬂ FBHE e )
L=BAS 1090 52 129, Aejels - 10909 79 209] or laslks, it can ba represenled by a DAG (Directed Acyelic



Graph). or a lask graph, wlnch represents the prece-
dence constraints ol the program tasks. The goals of
the scheduling process are to efficently utilize re—
sources and to achieve performance objecoves of the
application {e.g., to minimize program parallel execution
time),

Since it has been shown thal the multiprocessor
scheduling problem 15 WP-complete, many researchers
have proposcd schecduling algorithms based on heuns—
tics [2], The scheduling algorithms can be classified into
lwo general categores | algorithms that employ lask
duplication and algonthms that do not employ task
duplication Task dupleation algorithms allempt to re~
duce communication overhead by duplicating tasks that
would olherwise require inlerprocessor communications
if the tasks were not duplicated [9-18], One of the major
problems with task duplication 1s the issue of data dis-
tnbutien and preserving of dala mtegrity This paper
assumes that the systern does not allow task duplication.

Mosl of the non-duplicabion scheduling methods can
be classified as either a clustering algorithm (19, 20] or
a list scheduling algorithm [1, 8 21, 22]. The clustening
algorithms basically perform the following operations :

1. Initially, each task is considered to he a cluster

2 An edge hetween two clusters iz selected accord-
ing to a priority assigned o the edges by Lhe clu-
stering algorithm.

3 The cdge 13 removed (call edge zeroing) if it satis—
fies cerlain conditions specified by the algonthm.
Onee an edge1s zeroed, the two clusters connecled
by that edge wil be merged into one cluster.

4, Steps 2 and 3 are repeated until all the edges are
exagrined

. The cluslers are assigned to the processors in the

N

target syslem.

The List scheduling algorithms maintain a list of node
according to their pricribes. A list schedulmg algo-

rithm repeatedly carries out the following steps

1. Tasks ready Lo be assigned (a task becomes ready

[or assignment when all of its parents are sched-

CHS M2I7I AARIS 92t 8NPl BlAE A7IEE YB|

ol

2061

uled) are put onie a pricritv guene. The prority
criterfa determines the order in which lask are

assigned to the processors.

]

Select a “suitable Processing Element (PEY [or
assignnent. Typically, a suitanle PE 15 one that
can execute the task the carliest

3. Assign the task ar the head of the priority queve
to ths E.

4. Repeat steps 2 and 3 until the priorily queus 1s

exhausted.

Tvpically, the hst schedulmg algonihms assumc
bounded number of processors while clustering algor-
ithms assume an unbounded number of processors. This
difference is not significant since {hese assiumptons can
be easily removed for each method A mare significani
difference between the list scheduling and clustermg
algorithms is that list scheduling algorithms select onfy
aready node for assignment while clustering algorithms
may select any node [or tus purpose.

The critical parl in both technicques is the develop~
ment of a method lor assigning priorities o the nodes
or the edges of the inpul DAG Since a large number
ol dilferent methods are proposed in the literature, this
paper briefly classities them accordmg Lo the parame-
tors used for the priority assignment : the node weight,
the distance, the critical path, and some cornbinations
of them

The methods based on the node weight, such as lhat
m HWEF {Heavy Node Firsl), assign a lugher priority
Lo a node with a larger computation cost [1] The dis—
tance (defined as the sum of computation and commurni—
calion cosis of the nodes on a path) could he either the
maximum distance from a root node to the node under
consideration (top distance) or the maximum distance
[rom the node Being considered to an exit node (hottorn
distance). Tor example, HLFET (High Level First with
Estimated Time) aigorilhm assigns a higher prionly Lo
a node with a larger bottom distance [8] A large
number of scheduling algonthims use the length of the
critical path to assign prionlies to the nodes and edges
ol o DAG Some examples include Linear Clustering



2062 B=EHENTIR =2% HTT MTEE007)

LC) [19] and Dominant Sequence Clustering (DSC) [20]
algorithms. Finally, some algorithms use combinations
of the above parameters to decide the pricrities. For
example, Critical Path Node-Dominate (CPND} method
[22] uses the cntical path and the bottom distance for
assigning lhe priorties 1o the nodes n the input DAG.

This paper propozes a new list scheduling algorithin,
Decisive Path Scheduling (DPS) [21], whch assigns
the priorities to the nodes using the decisive path (de-
fined in Section 2). The performance comparison study
shows that the proposed algorithm outperforms existing
scheduling algorithims especially for input DAGs with
high communication overheads. The performance im-
provement over existing algorithms becomes larger for
denser and more parallel DAGs.

The remainder of this paper 15 orgamzed as [ollows.
Section 2 presents the system model and the problem
definition. Section 3 hrielly covers the related works.
The proposed scheduling algorithm s presented in
Section 4. This section also contains the worst case and
the optimality analysis ol the proposed algorithm. The
performance of the proposed algorithm 1s compared with
that of the {ypical existing algonthms i Sechon 5,
Finally, Scction 6 concludes this paper.

2. System model and problem definition

A parallel program is usually represented by a IDi-
recied Acvelic Graph (DAG), which is also called a task
graph. As defined in [16], a DAG consists of a tuple
(V,E. T, C), where V, E. T, and C are the set ol tasl
nodes, the set of commumcation edges, the set of com-
putation costs associated with the task nodes, and the
set of commumnicanon costs associated with the edges,
respectively The compurtation cost and the communica-
tion cost represenl Lhe time {or executing the task and
that for commumicaion delay, respectively, T(V)) 15 a
computation cost for task ¥V, and C(V, V) is the com-
munication cost for edge E(V, V;) which comnects task
V,and V,, The edge E(Y,, V,) represents the precedence
constraint helween the node V. and V). In other words,

task V, can start the execubion only afier the output

of V, iz available to V,. When the two tasks, V, and
V,, are assigned to the same processor, C(V, V,) is as-
sumed to be zero since intra—processor comumumicalion
cost is neghgible compared wilh the inlerprocessor
communication cost, The weaights associaled with nodes
and edges are ohtammed by eslimation [23].

This paper defines two relalions for precedence
constramis. The V, = V) relalion indicales the strong
precedence relation between V, and V,, That 15, V, is
an immedhale parent of V) and V) is an immediate child
of V.. The terms tparent and 1cfuld are used to represent
mmediate parent and mmmediale child, respectively
The V,—V, relahon indicales the weak precedence
relation hetween V. and V). That is, V| is a parent of
V) but not necessanily Lhe Immediate ope. V, — V, and
Vi—=Viomply Vi—=V, Vi=V, and V, = Vy do nol
imply ¥V, = V. bur mply V, — Vx . The relation —1s
transitive, and the relation = 15 not. A node without any
parent is called an erniry node and a node without any

chuld is called an exit node.

(Figurs 1} The sample DAG

Graphically, a node 15 represented as a crcle with a
dividing line in the muddie. The number n ihe 1pper
portien of the circle represents the node ID number and
the number in the lower portion of the circle represents
Lhe cormputation cost lor the node. For example, for the

sample DAG in (Figure 1}, the entry node is node mun-



ber 1 winch has a computation cost of 10 In the graph
representation of a DAG, the communication cost for
each edge is wiritten on the edge itsell. For cach node,
meoming degree 15 the mumber of mpuf edges and
oulgoing degree is the numbcer of output edzes.

Far example, 1n {Figure 1), the incoming and outgoing
degrees for the node Vi are 0 and 4, respectively. A few

terms are defined here for a more precise presentation.

Definition 1 A node is called a fork node if its

oulgomng degree is greater than L

Definition 2 : A node 15 called a join nede il its

mcoming degree is grealer than 1.

Note that the fork node and the join node are not
exclusive terms, which means that one node can be both
2 fork and alse a jon node ; e, both of the node's in-
coming and oufgoing degrees are greater than one,
Similarly, a node can be neither a fork nor a join node ;
1.e,, bath of the node's incoming and outgoing degrees
are ane. For lhe sample DAG in (Thgure 1), Vi is a [ork
ncde while Vi is a join node. Nodes Vs, Vg, Vi, and Vs

are neither fork nodes nor join nodes.

Delinition 3 : The Farliest Start Time. EST(V,, P/,
and Earftest Completion Time, ECTV,. Py, are the
times that a task V, starls and [inishes its execution
on processar Py, respectively When the information on
the processor is nol necessary, they are denctod just
as BEST(VY) and ECT(V), respectively

Definition 4 . The critical path is the longest palh
from an enlry node to an exit node in the graph, A Crit—
ical Path Inchiding Commumication cost { CPIC) is the
lenglh of the critical path including commumcation
costs in the path while a Critical Path Excluding Com-
munication cost (CPEC) is the length of the critical
path excluding communication costs in the path. For the
sample DAG in (Figure 1) as an example, CPIC is TV}
+ CiVy, Vo) + T(Va) + C(Vy, V) + T(Vs), which is 380
CPEC is T(Vy) + T(Va} + T(Va), which is 160.

LHE ®EI7| AlSRIE B

=ERY BIAE AHER BUEIE 2083

ro

Definition 5@ The flevel of a node is recurswvely
defined as follows The level of an entry node, Vi, is
one. Let Lw(V) he the level of V.. Then Lvi{¥y) = L
vV} = LeiVil =1, Vi =V, far non-join node V;
Lv(V)) = Max(Lv(Vi) + 1.V, =V, for join node V). Tor
example, the level of node V,, Vo, Vi, Va, Vs, and Vi
in the sample DAG are 1, 2, 2, 2, 2, and 3, respectively.
Even if there was an edge from node V1 1o Vs, the level
of Vs would still be 3 smee Lv(Vg) = Max(Lv(Vi}) +
1, Vi = Vg, for jon node Ve The levet of a DAG 13 the

maximun level of the nodes in the DAG

Definition 6 - The fop distance for any give node 15
the longest distance from an entry node to that node,
excluding the computation cost of the node itsell The
bottom disignee for any given node is the longest
distance from that node (o an exit node, including the
computation cost of the node itsell For example. the
ton distance of Vi, TDAVa), 15 280 which is TV + IV,
Vo) + TV + C{Vs, V). The botlom distance of Vg,
BD(V3), is 320 which is T{Vy) + C{Vg, Vo) + T(Vsh

Definition 7 The Decisiwe Path (P} 1o node ¥,
is the path which decides the lop distance of V. Fer
example, the decisive path 1o Vs , DP(Ve). 13 the path
through Vi, Vu, and Vi since the path decides the top
dislance of Vo The decisive path is defined {or cvery
node in the DAG For example. DP(V3) 15 the paih
through Vi and Vs The crilical path becoimes a special

case of the decisive path defined for an =xal node.

The multiprocesser scheduling process becomes a
mappng of the task nodes in (he input DAG to the
processars in the larget system with lhe goal of
mimnuzmg the execution time of the entirc program
This paper assumes a complete graph [or the target
systemn ; L.e., any processor can communicare with any
other processor. Interested readers may refer Lo [24] for
topology 1ssucs. The execution time of the enlire
program afler scheduling is called the paralle! time (o
he distinguished from the completion time of an in-

dhvidual task node.



2064 BRTEFIEE =EX H7H WIZE00T7

3. The related work

As discussed in the introduction, the critical 1ssue m
lisl scheduling and clustering algorithms is the method
by which the priorities of the nodes or edges ol the input
DAG are decided. Since most of the scheduling algo-
rithms use cerlain properties of the inpul DAG for de-
ciding the priorities, we classify the exisling scheduling
algorthms into four categories according to the prop-
erties used © node weights, distances, the crnibcal path,
and some combinations of these paramelers. This sec-
Hon brefly covers a typical scheduling algonthm in
each category The algorithms are used later tor perfor-
mance comparison against lhe proposed method.

The Heavy Node First(HNF) algorithm [1] assigns
the nodes in a DAG 1o the processors, level by level.
At cach level, the scheduler selects the eligible nodes
for scheduling n descending order based on compiutational
weight, with the heaviesl node (i.e. the node which has
the largest computalion cost) selected first. The node
is zelecled arhitranly if multiple nodes at the same level
have the same computation cost. The selected node is
assigned to a processor which provides the earliest slarl
time to the node

The High Level First with Estimared Time (HLFET)
algorithm [8] also assigns the nodes in a DAG to the
processors, level by level, At each level, the scheduler
assigns a hgher priotity to a node with a larger hotlom
distance. The node with the lighest pricrity is assigned
a processor which provides the earliest slart tume for
the node.

The Linear Clustermg (LC) algorithm [19] is a tradi-
tional crifical path based scheduling method, The sched-
uler identifies the critical path, removes the nodes m
the path and the edges attached o the nodes from Lhe
DAG, and assigns them to a lincar cluster, The process
is repeated wmlil there are no task nodes remaining in
the DAG. The clusters are then scheduled onto 4 proc-
CSSOr.

The Dormunant Sequence Clustering (DSC) [20] algo-
rithm is based on the dominant sequence whuch is a

dynarme version of the critical paih. The dominant se-

quence 15 the longest path of the task graph for
un-scheduled nodes [20]. Inibally, Llhe dominant se—
guence 18 same as the eritical path for the original input
DAG. At each step. the scheduler selects one cdge in
the dominant sequence and zeros it if the edge zeromng
reduces the lenglh of the dominant sequence. The
scheduler identifies a new dominant sequence since the
edge zeroing may change the longest path. The operations
are repeatedly carried oul untit all the edges are exam-—
ned.

In the Cnitical Path Node-Dominate (CEND) algo-
rithm [22], the nodes in the input DAG are classified
into three categories © Crilical Path Node (CPN), In
Branch Node (IBMN), and Out Branch Node (OBN). A
CPFNM 13 the node on the crincal path while an IBN is
a nodes which is not a CPN hut from which there 15
a path reaching a CPM. An OBN is a node winch is
neither a CPN nor an [BN, The CPND algarithm tries
to schedule the CPNs firsl. H there are unscheduled
IBNs winch are parenls of a CPN, they are scheduled
in the descending ordeir of their bottorn distances. OBNs
are scheduled alter all CPNs and [BNs are scheduled,
also 1 the descendimg order of their bottom distances.
CPND algerithm obtans a schedule using a FAST (Fasl
Assipnment using Search Techmaue) scheduler [2Z2]. A
series of oplimizations are then apphed Lo the ongunal
schedule Lo improve the performance of the application.
In this paper we use the origmal, un-optimized CPND
schedules smee we are mterested in investigating the
effectiveness of the prienty assignment methods. The
oplimizalion routines can also be applicd to the proposed
algorithm later on.

The me complexity and the priority criteria [or the
alorementioned algonthms are summarized in <Table 1>
The information lor the proposed algorithm (DPPS} is
alsg mcluded in this table and will be discussed shortly.

As an dlustration, (Figure 2}, presents lhe schedule
obtained by cach algorithm for the sample DAG of (Fig-
ure 1). Tn this example, P represents processing ele-
ment 1; PT s Lhe Parallel Time of the DAG; and
[EST(V, P, 1, ECT(V, P} represents the earliest start

time and earhest completion time of task £ In the [rst



{Table 1> Characteristics of schedulng algorithms

ALGORITHM FRIORITY CRITERIA COMPLEXITY

FINT Level and Node Weighl O{VlegV)
HLFET Level and Boitom Dislance (V)
LC Crincal Parh [

DsC Dominanl. Sequence iy “)logV)
CPND Critical Path and Botlom Dislance oY
DFS Decisive Path oV

line of (Figure 23, (a), for example, [0, 1, 10] represents
that task V1 starts and compleies 1ts own execution at
tune O and 10 respectively, on processor 1. The figure
also shows lhe delay due to communication lime. In
(Figure 2).(b) as an example, the start time of task Vs
is 140 since its immediate parent Vy completes its exe-
cution at time 50 and the communication takes 50 time
unils. In this example, the proposed algerithm provides
the best parallel nme compared Lo the other algorithms

under consideration,

pl [0, 1, 10] [10, 3, 601 160, 2, 801 [140, 6, 24C]
p2 . [70, 4. 201
p3 - (20, 5, 301

(a) The Schedule by HNF(PT = 240)

pl: 00, L 10] [10. 2, 300 [30, 3, 20] [140, 6, 210
p2 1 [70, 4. 80l
P31 [20, 5, 30]

(b} The Schedule by HLFET(PT = 240)

pl 0, 1, 100 116, 2, 307 (140, 6, 210)

p2 1 130, 3. 100)

p3 - [70. 4. 80)

pd 2 20, 5. 80
(¢

J The Schedule by LC(PT = 240)

pl @ [0, 1, 10] {10, 2, 301 [80. 3, 1001 1100, 4, 1107 [11C, &, 210]
p2 [20. 5, 30]

(d) The Schedule by DSC(PT = 210}

pl . [0, 1. 107 [16, 2, 301 [30, 3, 801 [140, 6, 2401
o2 [70. 4, 80]
p3 [20, 5, 30]

{g} The Schedule by CPND(PT = 240)
pl [0, [, 101 [10, 2, 501 [30, 4, 400 149, 3, 90 190, 6, 190)
p2 o [E0, B, 30]

{f} The Schedule by DPS(PT = 190)

(Figure 2) Schadules for the sample DAC

4. The proposed algorithm

4.1 Motivaiion

The basic heuristic behind various multiprocessor
schedubing algorithms is that we cao reduce the parallel
lime by first scheduling the task node which will have
the most impact on the parallel time For example, FINF
first schedules the heaviest node (the node with the
imghest computation time), assuming that the heaviest
node has more elfect on Lthe parallel tme than others.
The DSC, LC, and CPND algorithms locus on the crit~
ical path since il will most likely decide the parallel time
of the application. The proposed algonthm. DFS, fo-
cuses on Lhe “decisive path” since the length of the deci-
sive path to a node most often determines 1ls starling
nume, Note that the critical path is a special decisive palh
defined only for an exit node.

4.2 Algonthm deseription

A high level description of the proposed algorithm is
presenterd 1n (Figure 3} In siep (1), DPS transforms an
inpuc DAG to a DAG with only one entry node and only
one exit node. The transformabion can be done sunply
by adding a dummy entry node and a dunumy exit nade
with compulation costs of zera, The dummy entrv node
is commerted to the actual entrv nodes with commu-
nicalion costs of zero, Simmlarly, the dummy exit node
is connectad to the actual exit nodes in the same way,
Any task graph with multiple entry nodes and/or exil
nedes can be scheduled by DPS algorithim smee the task
graph can be easily transformed into a task graph with
only one entry node and one exit node in step (1) with-
oul violating any constraint in the original task graph.
Step (2) identifies the decisive paths to all the nodes
1n the mransformed nput DAG. The decisive path Lo the
dummy exit node becomes the critical path of the DAG

Step (3) builds the “task_quene” which queucs all the
DAG nodes, pricritized based on the lenglhs of ther
decisive paths. The priorines are decided as [ollows :
DIP5 puts the CPNs into the task_queue in the ascending
order of their top distances (parents [irst) if thers 18 no
IBN [or a given CPN. I Lhere are some IBNs reaching
a CPN, the TBN belonging to the decisive palh of the
CPN 15 selected first among the un—queued [BNs. The



2066 Bl=EENRIEE =20 MHrE RT=e007

same procedurc is carried oul recursively if an IBIY has
parents which are nol queued yet, After all the parents
are queued n Lhe task_queue, the CPN 1s mserted, as
shown 0 the search_and_put() procedure  Finally, DPS
assigns the task_queue tasks (in FIFO order) w the
processing elements (PEs). At each step of the assign—
menl. the selected PE provides the carliest start time
for the task under consideration, laking into account all
lhe communications from the task’s parenis (Le., [ind
a suitahle PE [or assignment). If the completion tume
of a task is larger than the sum of all the computalion
costs of the nodes, DP5 assigns all the nodes lo one
processor and Sexits from the algorithm as shown in
sleps (7) and (8

DPS Algorithm
(1) Transform the input DAG so that the DAG has only one
entry and onlv cne exit node :
(2) Idenlify the decisive path to each node ,
/% the decisive pulh 1o the exat node becomes the critical
path, CP +/
(3) task queus = hwld_lask_queue{CP) ,
() for each lask, V.. in the task_guece i a FIFO manner
5 find the suitable processor for V, ,

(B schedule Voon the suitable processor ,
(7} it ECTOV) = BTV, YV

(8 uni_schedulet) ;

(%) exat(( ,

(1) endif

(1) endfor

build_task_qucuc(CP)

7+ Let CPN be a set of nodes belonging 1o CP. NG 15 a =et
of nodes which are not in Lhe task queue vel. Imbally, NQ
conlamns all the nodes n the wput DAG. -/

(13 while (NQ=&)

{14} for each fask V), distancelV.] < distance[V)],
YV, V, ViELPN, V, V,ENQ

(15) [ YV, ENQ, Vi = ¥,

116) put V, mlo the task gueue ;

n NQ = NQ - {Vi},

(18} else

(19 search_and_pui(V}) ;

(20) endhf

{21) end{or

{22)  endwhile
{23)  retorn the task quene ;
search_and_put(Vy)
(24) for Vq, distance[Vy) + C(Vy, V) = distance[V,] + C(Vo. V),
WV Va2 V, Vo=V Vy, V,EXQ
/A Vyqis Lhe iparenl of and n the
decisive path to V, =/

(25)  search_and pul{Va) ;

(28)  put Vy into the lask queue ,
(27 NQ = NQ - {Va);

(28) endfor

uni_schedule{)
(29) remove the schedule oblained so [far,
(30) schedule all the tasks on one processor ;

{Flgure 3) Description of the DPS algorithm

Step {(2) takes O(V %) time for identlying the decisive
paths lo all the nodes. Step (2) also takes O(V time
gince 1t examines all the edges in the input DAG, IT
roughly estimated, the complexily ol build_task_gueue
in step (3) would be OUVE) since the while loop n slep
{13) takes O(V) and the for leop in step (14} exarmines
all the edges. However, nole that all the edges associ-
ated with each node arc examined m siep (14). The
number of edges examined becomes the number of the
edges in the input DAG. Therelore, the complexity of
the routine becomes O(E) which is (V). Step (5) lakes
OV) dme since |V processors are enough for this
scheduler. Thus, the time complexity of the DPS algo-
rithm hecomes OfV™),

4.3 Analysis of the proposed algorithm

The worst case analysis of the scheduling algorithm
is importanl especally for real-lime systems. At firsl,
we will show the worst case performance and the opti—
mality condition of the DPS algorithm [or a tree struc—
tured wnpur DAL The trec structured input DAG means
a taslk graph which does not contam a jom node. Then
the worst case performance analyss for a general input
DAG is presented. The nolations used in the proofs are
[irst summarized :

® V. 1he eniry nede.

e V. the exil node,

®» V. node Vi whose level is 4.

® Y, o an ipareni!? of V., wlich means that Vi is the
exit node m the original input DAG hefore the
transformatiorn.

¢ LDP(V) : the length of the demsive path lo the
faslk node V.

 DPN(VD © a sel of nodes on the decisive path to
Lhe taslk node V.

® TN a set of fork nodes,

For a tree siructured input DAG not containing a join
node, the worst case parallel lime oblained by the DPS
algorithm is max{ ZTV) + ZCV, Vil Vi =V, V, &

1 Please reler to section 2 lor the defimtions of mparenl, and 1child



FN, V,, V, € DPIN(V,), ¥V, Vp= V. Thal 1s, the worst
case parallel tune is the largest ECT(Vp) which is the
sum of computabion costs of the nodes on the path Lo
¥y plus the sum of the commumeation costs from onfy
the forlk nodes on the path. Theorem 1 proves Lhis
assertion by induction The proof basically says Lhat,
for any ichild” V, of ¥, LECTIV) = ECT(v,) + TV,
1f V118 niot a fork node while ECT(V;) = ECT(V) + C(V,,
V) + T(V,} in the worst case if V) 15 a fork node wilh
the basis that ECT(V,) = T(V,),

Theorem 1 : For a trec structured mput DAG which
does not contam a join node, the worst case parallel time
obtamed by DPS, PT(DPS), is max{ 2TV} + 2C(V,
VoL ¥ =V, V, € FN, V¥, V, € DPN(V,), YV, Vo = Ve

Froof *

The parallel ime is the largesi ECT(Vy), ¥V, V=
Ve since C(V,, Vo) = 0 and TiVe) = 0. We are going
o show thal ECT{V,) = ZTV) + 20V, V), V. =
V, VVETN, V, V, € DPN{V}}, in the worst case.

1) Basis : For the entry node Vi, BCT(V) = TV,
2) Inductive Hypothesis : for vV, V, =V,

21) ECT(V)) = ECTIV) + T(V,), il V, &€ FN.

2.2) ECT(V,) = ECT(V.) + C(V,, V) + T(V)) n the

worst case, if Vi € FN,

3) Inductive Step @ Let Pu be the processor where

V., has been scheduled.

3.1 V. &€ FN,V, =V, the suitabie PE obtained
by step (5) n the algonthm will be Py since
Pr gives the earliest start time EST(V)) =
ECT{(V) Then ECT(V,) = ECT(V3) + T(Vy)
If Vi & FN, V. = V,, the suitable PE obtained
by step (5) will be Py 1if Py provides a start
time for V, which is earlier than ECT(V)) +
C(V, V)) Otherwise, step (5) will retum another
processor where ECT(V,) = ECT{V,} 1 C{V,
V) + T(V)), Thus, it is guaranteed that ECT(V))
= BCT{VY) + CUV,, V) + T(V)) in the worst case.

0l

32

ey

It is ohvigus thal the parallel time ohiained by the
DPS scheduler is always less than or equal to the swum

CIE Mozl A|AEE giot Z280 clAE ~AIEE YTRIE 2067

of the computation costs of the task nodes m any DAG
due to steps (7) and (3} of the algorlhm (Figure 3). We
will also prove that the parallel time oblained by ihe
proposed algorithm 1s always Icss than or egual to the
length of the crilical path, CPIC, lor any mput DAG.
Nole that the parallel time is the same as ECT(S,.), and
the CPIC is the same as LDP(S.). Therelore, praving
thar the parallel time is slways less than or equal to
CPIC 15 equivalent to proving ECT(S.) < LDP(S,).

Theorem 2 For any input DAG, when using the
DPS algerithm for scheduling, ECT(S,) < LDP(S.).

Proofl by induclion :

1) Basis . ECT(Vis) = LDP(Veal.

At level one, ECT(V,) = LDP(V,) = T(V,) since V; is
the durmnmy entry node Then ECTV 20 = ECT(V,) +
TV, i Ve = CPNL Il Vg & CPN, Lhe suitable PE 1s
the processar where V. is scheduled if EST(Vi.) =<
ECT(V,) + C{V,, Vi), Otherwise Vi will be scheduled
on a different processor where ECT(Vyz) = ECT(V,} +
C{V,, Via) + T(Via). Therefore, il is guarantced thal
ECTVz < ECT(V,) + GV, Vi) +T(Vis), Thus, ECT(Via)
< LDP(Viz) since LDP(Viz) = LDP(VS) + C(Vy, Vi) + T(Vya)
for any Vi

2) Inductive Hypothesis @ 1f ECT{(Vy,) = LDP(Vy,)
then TCT(Viz1) < LDPUV 1)

3} Inductive Step .

Vignr will be scheduled on the processor where Vi,
Vi = Vi, bas Deen scheduled if EST(V -1} < ECT(VL)
+ C{Vi,, Vi), Otherwise Vi -1 will be scheduled on a
different processor where BECT(Vi; ) = ECT{Vy) *
ClVip. Vo) + TUVeu1). So il is guaranieed that TCTIV,-)
< ECT (Vi) 1 GV, Vig-1) = TtVia). Thus, TCT(VL0)

< LDP{(Vi;) 1f ECT(Vy) < LDP{Vy,) smce LDP{V 1) =
LDP(Vi) + OV, Vign) 4 T(Vige).

According to the inductive slep, the completion time
of any node is shorter than the length ol the decisive
path to that node, including the exit node. That is, the
paralle] time is alwavs less than ar equal to the CPIC. [

5. Performance comparisen

We generaled random DAGs to compare the perfor-



2iee StEEEME|=E =2A MTE R7=e000

mance of the proposed DPS algorithm with that of the
existing scheduling algonthms through a simulation study.
We used four paramelers the effects of which we were

nterested to mmvestgaie .

1 The number of DAG nodes : DAGs of varying
sizes, including DAGs with 20, 40, 60, 80, and 100
were considered.

2. The CCR (Communication to Compuiation Rartio) :

CCR is the raiio of the average commmunication
cogt to the average computation cost. CCR values
of 0.1, 05, 1O, 90, and 10.0 were considered.

2._The depth or maximum level of the DAG : We
were interested Lo investigate the effect of the
degree of parallelism in a DAG on the scheduling
algorithms. For a fixed number of nodes, a DAG
with a shorter depth (maxinmum level or fevel of
the durnmy exit node) displays more parallshsm
compared to a DAG with a longer depth Il K is
the average number of sibings at a level, and N
is the number of DAG nodes, then the average
depth of the DAG will be N/ K. Thus, for a fixed
numbcr of DAG nodes, if the average number of
siblings at the same level (K) is small, the DAG
represents a tall and lean graph which has a low
degree of parallelism. On the other hand, a large
value of K generates DAGs with more parallelism
among the siblngs. In our studies, we ranged the
number of siblings (K) from 2 to 10

4. The ayerage out-depree of a node - The average
cul-degree of 4 node conlrols the density and
amount of communication amaong the nodes, The
larger ihe average oul—degree, the denser the DAG
15 and more commurucations are generated. We

considered ihe averape cui—degrees of 2 to K.

There are 25 combinations of the DAG sizes and Lhe
CCR values (5%5), Since there are 9 levels {from 2 to
10) for each combination and each level K has {(K-1)
cases of outgomg degrees (from 2 to K), there are 45
(1+2+..+9) cases [or each combination. Since we gen—
erated D random DAGs for each case, the number of

DAGs used for the performance comparison siudy 15

5,025 (25 ¥ 45 ¥ 5), The scheduling algorithms dis-
cussed in sechion 3 ; ie, HWF. HLFET, LC, DSC, and
CPND. were compared agamnst the DPS algorithm.
For performance comparison, we define a normalized
perfommance measwre named Relative Parallel Time
{RPT), which is the ratio of lhe parallel time o CPEC.
For example, 1f the parallel time oblained by the DPS
is 200 and CPEC is 100, RPT of DPS is 20. If LC
provides a parallel of 250 for the same DAG, then its
RPT iz 235 A smaller RPT value 15 indicative of a
shorler parallel time. The RPT of any scheduling al-
ganithm can nel be lower than one since CPEC is the
lower bound for completion lime of the DAG.
{Figure 4) compares the performance ol the sched-
ulmg algorithms with respect to the aumber of DAG
nodes Each case in (Figure 4) shows an average RPPT
value fromn 1125 runs with varying CCR, K. and average
oul-degree vahies The average values of CCR and K
tumed out to be 3.3 and b, respechvely. As shown in
(Fipure 4). the number of nodes does not significantly
atlect the relative performance ol scheduling algorithms,
In other words, the perlormance comparison shows sim-
ilar patterns vegardless of W The pattern shows that
for the same set of DAGs, DPS provides a shorter par-

allel time than the existing algorithms,

O HNF
[ HLFET
Lo

[ DSC
W CPND
B DPS

(Figure 4} Performance comparison with respect to N
{for average CCR =33 and K = &)

(Figure O} demcts the RPT values for varving CCR
values When CCI is less than one. D5C shightly out-
performs Lhe other algorithms When CCR 15 one, all

the algonthms perform evenly. However. as the CCR



value is increased, DPS outperforms the other algo-
rithms. The performance gap hecomes larger as CCR

values are increased.

RPT

HNF
[] HLFET
OLc

] DSC
W CPHD
| DPs

(Figure 5) Performance comparison with respect to
CCR (for N =100 and average K = 5)

(Figure 6) shows the ellecl of Lhe degree of par-
allelism in the DAG (represented by & = average num-
her of sibling nodes at each level) on the scheduling
algorithms, Recall that for a fixed number of nodes in
the DAG, a smaller K value results m a more serial
DAG, while a larger K resulls 1n a more parallel DAG.
In all cases the proposed DPS algorithm outperlorms
the other scheduling algorithms, however, the perfor-
mance gap becomes mare pronounced for DAGs with
a mgher degree of parallelism Thus 15 an mmportant result
because it shows that the decisive path heuristic dees
a good job of discrimninaling the nodes m the difficult
case of havimg many parallel nodes az well as the easy

case of having many seral nodes m the mput DAG.

APT
14
12 B HNF
10 O HLFET
] oL
g [ Dsc
4 W CPND
2 | DPS
0

2 3 4 5 6 7 8 9 10
Number of Siblings

(Flgure 8) Performance comparison with respect fo
number of siblings (K)
{for N = 100 and CCR = 10)

Tz AlLRE 2R HEMS 2|AE AMESE YRS 2059

Finally, (Figure 7} depicls the performance results when
the amount of communication, represented by the av-
erage out-degree ol the nodes, in the DAG is varied.
It seems the sludied schedulng algorithms are nol
sensitive to the degree of communication {or dependen-
cy) in the DAG. The relative performances remain fixed
for varving average node out-degrecs, However, 1n

almost all cases, DPS outperforms the other algoritams.

[ HWF
O HLFET
gLc
[3CsC
W CPHD
B D=5

20 23 38 47 55 Gd 73 82 91
Average Degree

(Figure 7) Performance comparison with respect o
average out-degree of a node
{for N=100, CCR =10 and K = 10)

£. Conclusion

One of the critical izsues in a list scheduling algo-
rithm is the development of a method [or assignment
of pricrihies to the nodes or edges of an input DAG, In
this paper we proposed a novel method, called decisive
path scheduling, for determining node priorities in a list
scheduling algonchm. Through an exlensive perfor—
mance study. it is shown that the proposed algorithm
outperforms many of the existing hist scheduling |, as
well as chistering, algorilhms. The paper also establishes
an oplumalty conchilion and provides a worst-case analysis
of the proposed algorithm for a tree structured DAG

which does not contain a join node.

Acknowledgment

We would like to express our appreciation to Dr, Tao
Yang and his research group for providing Lhe source
code for the DSC schedulers which was used in our

perfornmance comparison study.



2070 E=E2A2SE =R M HI7EE007)

References

[1]1 B Shirazi. M. Wang, and G Palhals, “Analysis and
Evalualion of Heuristic Methods for Static Taszk
Schedulimg,” Journal of Parallel and Distributed
Computing, Vol 10, No.3, 1980, pp.222-232.

[2] B.Shirazt. A R. Hurson. “Scheduling and Load Bal-
ancrg - Guest Editors' Introduchon,” Journal of Par-
allel and Distributed Computing, Dec. 1992, op.
2711-2715,

[3] B. Shirazi, A. R. Hurson, “A Miu—track on Sched-
uling and Ioad Balanemg : Track Coordinator's
Introduction,” Hawait Im'l Conf on Svsterm Sci-
ences (HICSS-26), Jan. 1993, pp 484-486.

[4] B Shirazi, A. R. Hurson, K. Kavi, "Scheduling &
Load Balancing,” IEEE Press, 1995.

[5] B. Shirazi, H-B Chen, and J. Merquis, “Compar-
ative Sludy of Task Duplication Static Scheduling
versus Clustering and Non—-Clustering Techniques.”
Concurrency - Practice and Lxperience. Yol.7(5),
Aug. 1995, pp.371-359.

[6] M. Y. Wi, A dedicated track on “Program Parti—
tioning and Scheduling m Parallel and Distributed
Systems,” in the Fawail Int'l Conference on Sys-
tems Sciences, Jan. 1994,

[71T. Yang and A Gerasoulis, A dedicated track on
“Partitionng and Scheduling for Parallel and Dis-
tribured Compulation,” in the Haweii frit] Confer-
ence on Svstems Sciences. Jan. 1995

[8] T. L. Adam, K Chandy, and J. Dickson, “A Compari-

son of List Schedubng [or Parallel Processing Sys—

tem.” Communication of the ACM, Vol 17, No12,

Dec. 1974, pp.685-650,

Gyung—Leen Parl, B. Shirazi, and J. Marcuus,

“DFRN : A New Approach [or Duplication Based

Scheduling [or Distribuded Memory Systems,” fn-

—
=)
it}

ternational Parallel Processing Sympostum, pp.157-166,
Geneva, Switzerland, Apnl 1997

[10] Gyung—Leen Park, B. Shirazi, and J. Marquis, "A
Scalable Task Duplication Scheduling [or Message
Passing Systems,” International Conjerence on Par-
aflel and Dhstributed Systems, pp.122-129, Barcelona,
Spain, June 1997,

[11] Gyung-Leen Park, B. Shwraz, and ] Marquis,
“Comparative Study of Slalic Scheduling with Task
Duplication for Message Passing Multicomputer
Systems,” Internationa! Svmposwim on Solving Trreg-
vlarly Structured Problerns in Parallel, pp.123-134,
Paderborn, Germany, June 1997,

[12] I Ahmad and Y. K. Kwok, "A New Approach Lo
Scheduling Parallel Program Using Taslk Dupli-
cation,” Proc of It Conf on Parallel Processing,
Volll, Aug 1994, pp.d7-5l.

[13] ¥ Chen, B. Shiraz. and ], Marquis, “Performance
Evaluaton of A Novel Scheduling Method © Linear
Clustering with Task Duplicauon,” Prac of Int'l Confl
on Parallel and Distributed Systems, Dec. 1993,
pp 270-275.

(14] Y. C. Chung and & Ranla, “Application and Perfor-
mance Analveis of a Compile-Time Optimization
Approach for List Scheduling Algorithms on Dis—
inbuted-Memery Multiprocessors,” Proc of Su-
percomputing 92, Nov. 1992, pp.512-521,

[15] J.Y.Colnand P, Chretienne, "C.P.M. Scheduling with
Small Commurucanon Delays and Task Duplicaticn,”
Onerations Research, 1991, pp.630-634.

[16] 5. Darbha and D. P Agrawal. "SDBES : A task du-
plication based optimal scheduling algorithm,” Proc
of Scatable High Perforrmance Compriting Conf., May
1994, pp 7HG-763.

[17] B. Kruatrachuc and T. G Lewis, “Gran Size Deter—
minalion [or parallel mocessing.” [EEE Sqftware,
Jan. 1988, ppZ23-32

[18] S. Darbha and . P. Agrawal, “A Fast and Scalable
Scheduling  Algonthm  for  Distributed Memary
Systems,” Proc o Symp. On Parallel and Distrnb-
ufed Precessing, Oct 1993, pp GO-63.

[18] S. J. Kmm and J. C. Browne, “A general approach to
mapping of parallel computation upon multiproces=
sor architectures,” Proc of Int'l Conf. on Parallel
FProcessing, VolIll, 1988, pp.1-8.

[2001 T Yang and A Gerasoulis, “DSC : Scheduling
Parallel tasks on an Unbounded Nuniber of Proces-
sors,” TEEE Trans. On Parallel and Distributed
Svstems. Volb, No9, pp951-967. Sep 1984

[21] Gyung-Leen TPark, B. Shirazi, ] Marmuis, and
Hvunseung Choo, “Decisive Path Scheduling * A



New List Scheduling Method,” Interrational Con-
Jerence on Paraflel Processing, pp.472-480, Chicago,
TJSA, Aug. 1997,

122] Y.-K Kwolk [ Ahmad, and ] Gu, “"FAST:A
Low-Complexity Algorithim for Efficient Sched-
uling of DAGs on Parallel Processars,” Proc of Int’l
Conf on Parallel Processing, VolIL, 1996, pp. 150157,

[23] M. Y. Wu and D. D Gayski, “Hypertool : A Pro-
gramming Aid for Message-Passing Svslems,”
[EEE Trans. on Parailel and Distributed Systems.
Voll, No.3, Jul. 1990, pp.a30-340.

[24] Hyunscung Choo, Hee Yong Youn, Gyung-Leen
Parl, and Behrooz Shirazi, “Efficient Processor Allo—
cation Scheme for Multi Dimensional Interconneclion
Netwarks,” Z6th Internationad Conference on Parallel
Processing, pp.114-117, Chicago, USA. Aug. 1997

T
e-mail : glpark@cheju.chequ ac kr
1986 ST R AAA A

(D)

1988 FFeherin A1AkA Ak
I (F 4 AL
19975 @lAbs FR(LEE) 7

HFH FRUTTAA
1997 "Abs FOd g At gk

(Feebah
84 AFcurn A0 Ie)s 24 AT 2

A/EE A Alad, &fF §E Al
T H7 &

O Mel?| \A-g

email * choo@yunm.slklavac kr

198813 A FoiErE o) Fifst
a3 29(3h

1990 Al (k)
xdzmmmu%am A

19963 ElAL~ ST E) H kg stab(F ekl

19972 ~1998d B51F AT AFEHAAEE EY
s

A AdddEs

FA R ATM, Hd 2 B4 #He], dzag 4,

Hob

o &

e-mail : jhlee@venusl.cheyuacke

198413 ~ 1588y A& Cl8d HFH
SEETEE

19884 ~ 1990 AT HE
FEIAAD

1990 ~1992d -5 dE A4

19024 ~1996 A & Ul m BFEFHAHEAD

19961 ~1997d B4-g4l FEA

A AFdgn AFA Sy 2is
]

5

TRk AN F

e
=
A
[
oz
EA
o,
o
=
2
oifl
=



