SADDLE POINTS OF VECTOR-vALUED FUNCTIONS IN TOPOLOGICAL VECTOR SPACES

  • Kim, In-Sook (Department of Mathematics Sungkyunkwan University)
  • 발행 : 2000.09.01

초록

We give a new saddle point theorem for vector-valued functions on an admissible compact convex set in a topological vector space under weak condition that is the semicontinuity of two function scalarization and acyclicty of the involved sets. As application, we obtain the minimax theorem.

키워드

참고문헌

  1. Applied Nonlinear Analysis J.-P. Aubin;I. Ekeland
  2. Appl. Math. Lett. v.11 Saddle points and minimax theorems for vector-valued multifunctions on H-spaces S. -S. Chang;G. X. -Z. Yuan;G. -M. Lee;X. -L. Zhang
  3. J. Optim. Theory Appl. v.60 A minimax theorem for vector-valued functions F. Ferro
  4. J. Optim. Theory Appl. v.68 A minimax theorem for vector-valued functions
  5. Proc. Amer. Math. Soc. v.3 A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points I. L. Glicksberg
  6. Appl. Math. Lett. v.12 Loose saddle points of set-valued maps in topological vector spaces I. -S. Kim;Y. -T. Kim
  7. Math. Ann. v.141 Leray-Schauder theory without local convexity V. Klee
  8. Nonlinear Anal. v.18 A saddlepoint theorem for set-valued maps D. T. Luc;C. Vargas
  9. Math. Ann. v.100 Zur Theorie der Gesellschaftsspiele J. von Neumann
  10. J. Optim. Theory Appl. v.40 Some minimax theorems in vector-valued functions J. W. Nieuwenhuis
  11. J. Korean Math. Soc. v.35 A unified fixed point theory of multimaps on topological vector spaces S. Park
  12. Wiss. Z. Techn. Univ. Dresden v.12 Die Raume $L^p$(0,1)(0 < p < 1) sind zulassig T. Riedrich
  13. Wiss. Z. Techu. Univ. Dresden v.13 Der Raum S(0,1) ist zulassig
  14. J. Optim. Theory Appl. v.84 Minimax theorems and cone saddle points of uniformly same-order vector-valued functions D. S. Shi;C. Ling
  15. J. Optim. Theory Appl. v.89 Existence theorems for saddle points vector-valued maps K. -K. Tan;J. Yu;X. -Z. Yuan
  16. J. Optim. Theory Appl. v.62 Existence theorems for cone saddle points of vector-valued function in infinite-dimensional spaces T. Tanaka
  17. Nihonkai Math. J. v.1 A characterization of generalized saddle points for vector-valued functions via scalarization
  18. J. Optim. Theory Appl. v.81 Generalized quasiconvexities, cone saddle points, and minimax theorem for vector-valued functions