References
- Applied Nonlinear Analysis J.-P. Aubin;I. Ekeland
- Appl. Math. Lett. v.11 Saddle points and minimax theorems for vector-valued multifunctions on H-spaces S. -S. Chang;G. X. -Z. Yuan;G. -M. Lee;X. -L. Zhang
- J. Optim. Theory Appl. v.60 A minimax theorem for vector-valued functions F. Ferro
- J. Optim. Theory Appl. v.68 A minimax theorem for vector-valued functions
- Proc. Amer. Math. Soc. v.3 A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points I. L. Glicksberg
- Appl. Math. Lett. v.12 Loose saddle points of set-valued maps in topological vector spaces I. -S. Kim;Y. -T. Kim
- Math. Ann. v.141 Leray-Schauder theory without local convexity V. Klee
- Nonlinear Anal. v.18 A saddlepoint theorem for set-valued maps D. T. Luc;C. Vargas
- Math. Ann. v.100 Zur Theorie der Gesellschaftsspiele J. von Neumann
- J. Optim. Theory Appl. v.40 Some minimax theorems in vector-valued functions J. W. Nieuwenhuis
- J. Korean Math. Soc. v.35 A unified fixed point theory of multimaps on topological vector spaces S. Park
-
Wiss. Z. Techn. Univ. Dresden
v.12
Die Raume
$L^p$ (0,1)(0 < p < 1) sind zulassig T. Riedrich - Wiss. Z. Techu. Univ. Dresden v.13 Der Raum S(0,1) ist zulassig
- J. Optim. Theory Appl. v.84 Minimax theorems and cone saddle points of uniformly same-order vector-valued functions D. S. Shi;C. Ling
- J. Optim. Theory Appl. v.89 Existence theorems for saddle points vector-valued maps K. -K. Tan;J. Yu;X. -Z. Yuan
- J. Optim. Theory Appl. v.62 Existence theorems for cone saddle points of vector-valued function in infinite-dimensional spaces T. Tanaka
- Nihonkai Math. J. v.1 A characterization of generalized saddle points for vector-valued functions via scalarization
- J. Optim. Theory Appl. v.81 Generalized quasiconvexities, cone saddle points, and minimax theorem for vector-valued functions