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EXISTENCE OF GROUP INVARIANT SOLUTIONS
OF A SEMILINEAR ELLIPTIC EQUATION

RyuJr KAJIKIYA

ABSTRACT. We investigate the existence of group invariant solu-
tions of the Emden-Fowler equation, ~Au = |z|°|ufP'uin B,u =0
on 8B and u(gz) = u(z) in B for g € G. Here B is the unit ball in
R*,n>21<p<{n+2)/(n—2),c >0and G is a closed subgroup
of the orthogonal group. A solution of the problem is called a G in-
variant solution. We prove that there exists a G invariant non-radial
solution if and only if G is not transitive on the unit sphere.

1. Introduction

|
We consider the existence of group invariant solutions of the Emden-'

Fowler equation,

(1.1) —Au=|z|]°|u["'u, =z € B,
(1.2) u=0, z € 0B,
(1.3) u(gz) = u(x), zeB, geaq,

where B={z € R": |z| <1},n>2,1<p< (n+2)/(n—2),0 >0
and G is a closed subgroup of the orthogonal group O(n). We call a
solution of (1.1)-(1.3) a G invariant solution. In this paper, we extend
the result of [8] with o = 0 to the case ¢ > 0. It is known that (1.1)-
(1.2) has infinitely many radially symmetric solutions. Any radially
symmetric solution becomes a G invariant solution. We consider the
converse problem: Must a G invariant solution be radially symmetric?
Otherwise, does there exists a G invariant non-radial solution?
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Since G is a closed subgroup of the orthogonal group O(n), G is a
transformation group on the unit sphere S,

S"l={z eR":|z|=1}.

G is said to be transitive on S*! if for any two points z,y € S"*! there
exists a g € G such that gz = y. Our answer to the problem is as follows.

THEOREM 1. The following two assertions are equivalent.

(i) G is not transitive on S™!.

(ii) There exists a sequence {ux}, of solutions of (1.1)-(1.3) such
that each uy, is G invariant, not radially symmetric and

0< “uluHé(B) < HU2HH(}(B) < ||U3l|Hg(B) <-oe oo,

where | - || 35y denotes the L? Sobolev norm of the first order.

It is clear that when G is transitive on S™!, any G invariant solution
has radial symmetry. Therefore the assertion (ii) implies (i). Theorem
1 asserts mainly that (i) implies (ii).

COROLLARY 1. If dim G < n — 2, then the assertion (ii) of Theorem
1 holds.

COROLLARY 2. If G is a finite subgroup of O(n), then the assertion
(ii) of Theorem 1 remains valid.

By Cartan’s theorem [7, p115, Theorem 2.3], a closed subgroup G of
O(n) is also a Lie subgroup. Therefore dim G denotes the dimension of
Lie group G. If dimG < n—2 < dim S™"}, then G can not be transitive
on S™!. Therefore Corollary 1 follows from Theorem 1. Corollary 2 is
trivial because a finite group is not transitive.

We consider the question related to Theorem 1: What kind of G
is transitive? This problem has already been solved by Montgomery,
Samelson and Borel.

THEOREM A ([9], [3]). Let n > 2 and G be a connected closed
subgroup of SO(n). Then the following are equivalent.

(i) G is transitive on 5™,

(ii) G is O(n)-conjugate to one of the following subgroups : SO(n);
SU(m), U(m) (n = 2m); Sp(m), Sp(m)Sp(1), Sp(m)U(1) (n = 4m);
Spin(9) (n=16); Spin(7) (n=28); Gs (n=17).
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If G is not necessarily connected, Theorem A implies the next theo-
rem.

THEOREM B. Let n > 2 and G be a closed subgroup of O(n). Then
the following are equivalent.

(i) G is transitive on S™!.

(ii) The connected component of G which has the unit matrix is O(n)-
conjugate to one of the Lie groups listed in (ii) of Theorem A.

2. G invariant eigenvalues

In this section, we investigate the upper estimate for the G invariant
eigenvalues of the problem,

—Ay = Mz|u, T € B,
(2.1) u=0, z € 0B,
u(gz) = u(x), zr€B, geq.

This problem has countably infinitely many eigenvalues {A},
0</\1</\2S)\3S---/‘.

Here the eigenvalue is repeated a number of times equal to its multiplic-
ity. We define

(2.2) G(z) = {9z : g € G} for € S™1,

(2.3) m = max{dim G(z) : z € "'}

For each z € $™°!, the orbit G(z) is a closed submanifold of S™!, and so
the number m is well-defined. If G is not transitive, then 0 < m < n—2.
The main assertion in this section is as follows.

PROPOSITION 2.1. Let G be not transitive on S™!. Then 0 < m <
n — 2 and there exists a constant C > 0 such that

M < CKY™ for ke N.

To prove this proposition, we introduce norms, function spaces and
operators.
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DEFINITION 2.2. We define

e = ([ Iul"lrcl”dx)l/q,
lull, = Tl = ( [ |u|de)”q_

In case of ¢ = 2, the inner product is defined by
(U, v)e0 = / wvlz|’dz,
B
(,v)2 = (w,v)20= / uvdz.
B

We set
LI(B) = {u: |lullgo < 0o},
Li(B,G) = {u € LL(B) : u(gz) = u(z) (z € B,g € G)},
Hy(B,G) = {u € Hy(B) : u(g9z) = u(z) (z € B,g € G)
Ay = —|z|77Au,
Agu = —|z|7? Au,
D(A) = {u € LX(B) N HX(B) : Au € L2(B)},
D(Ag) = D(A)n Li(B,G).

LEMMA 2.3. The operator Ag is self-adjoint in L2(B,G) and has a
compact resolvent.

)

We will give the proof of the lemma in Appendix. Lemma 2.3 means
that the spectrum of A consists only of discrete eigenvalues and the
system of eigenfunctions is complete in L2(B,G). The eigenvalue ) is
characterized by the minimax value of the Rayleigh quotient,

(o o /(s = = [ el dusvas / [ otras

_ /|Vu|2dx// W]zl ds = R(u).

It is well-known that (see [5, p. 405], [11, p. 76])
A = inf{R(u) :u € Hy(B,G)\ {0}},
M = sup{d(vi, - ,vk-1) i 01, , vk € Hy(B,G)} for k > 2,

where
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d(vy, -+ ,vk—1) = inf {R(u) :u € Hy(B,G)\ {0},
(u,v3)20 =0for 1 <i<k-— 1}.
Proof of Proposition 2.1. We set
D={zeR": 1/2< |z| < 1}.
Let i denote the k-th eigenvalue of the problem (2.1) with D instead

of B. From D C B, it follows that Ay < p. The Rayleigh quotient
associated with py is

R — /D|VU[2d37 . 20/D|Vu|2dx

/ u?|z|°dz / u’dzx
D D

The minimax value of the last quotient is the k-th eigenvalue v of the
problem,

—Au = vu, x € D,
u=0, x € 0D,
u(gz) = u(z), zeD, geaG.
Therefore Ay < ux < 29v;. By [8, Proposition 3.3], there exists a
constant C' > 0 such that v, < Ck¥®™ ™) for k € N. This completes
the proof. O

3. G invariant critical values

Our argument to prove Theorem 1 is based on the variational method
of the functional I(u),
1

1
I(w) = /B (3174l = —lel"uP*) ds, we Hi(B,G).

The solution of (1.1)-(1.3) is considered as a critical point of I(-) because
I'(u) is calculated as

I'(upp = / (VUV’U — |:E|”|u|p_luv) de  for ve H)(B,G).
B

If I'(u)v = 0 for all v € H}(B,G), then this identity remains valid for
any v € H}(B). See [8] for the proof. Therefore u satisfies (1.1)-(1.3) in
the distribution sense. The elliptic regularity theory proves that u is of
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class C?(B). Consequently, to prove Theorem 1, we have only to find a
non-radial critical point in H}(B,G).

In this section, we use the symmetric mountain pass method by
Ambrosetti-Rabinowitz [1] to construct G invariant critical values.

DEFINITION 3.1. Let K be the closed subset of H}(B, G) such that
0 ¢ K and —u € K for u € K. We define the genus v(K) of K by
the smallest integer k such that there exists an odd continuous mapping
from K to R¥\ {0}. When there does not exist a finite such k, we set
Y(K) = oo.

In the next proposition, we obtain G invariant critical values.

PROPOSITION 3.2. There exists a sequence {oy} of real numbers
which satisfies the following conditions.

(i) Each ay is a G invariant critical value of I(-).

i)0<ar<ar<--- S oo.

(iii) If o = a1 = - -+ = oyj = o, then it holds that v(K,) > j+1,
where

K,={ue H}(B,G):I'(u) =0 and I(u) = a}.
(iv) There is a constant C > 0 such that

ax < CkTReD  for k € N,
where m is defined by (2.3).

Proof. This proposition except for (iv) is due to Ambrosetti and
Rabinowitz [1]. The proof of (iv) is proved in the same way as [8] by
using Proposition 2.1. However, for the reader’s convenience, we give the
proof. Let A\ be the k-th eigenvalue of (2.1) and ¢, the eigenfunction.
We set

Ek - Span{¢l; T a¢k}'
Recall the definition of I(u),
1 1
(3.1) I(u) = 5lIVull; - mllﬂllﬁﬁ,m

where the norm || - ||,» and || - ||, are defined by Definition 2.2. Since each
E} is a finite dimensional linear space, the H}(B) norm is equivalent to
the L2+*!(B) norm, and so we have a sequence { Ry} such that

(3.2) I{u) <0 for ||ullm > Ry and u € E.
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We may assume R; < Ry < --- /oo without loss of generality. Set
I'v = {heC(Dy,Hy(B,G)): hisodd on Dy and h(u) = u on 8Dy},
Dy = {u€ Ep:|lullm < Rty

0Dy = {u€ E: |lullg = R}

We define

(3.3) g = hlgrfk max I(h(u)).

The assertions (i)-(iii) are proved in the same method as [10, pp55-60).
To prove (iv), we take h = identity € I'; and obtain

(3.4) ay < max I(u) < supI(u).
ueDy, By
It follows from the definition of Ej that ||Vull} < Ailjull3, for u € E;.

Since p > 1, there is a C > 0 such that ||u|l2; < C||ullp+1,0. Therefore

there is a constant ¢g such that cox\,:(p“q)/z||Vu”‘2’+1 < ||u||§ii0 for u € E;.
Hence we have

1 - ) —
ar < Sup{—nvu“g — i/\k(p+l)/2uvu“g+1} < Cl/\i;p-l—l)/(p 1)'
B, 2 p+1

Here C, is independent of k. This inequality with Proposition 2.1 com-
pletes the proof. O

4. Radially symmetric critical values

In this section, we consider the radially symmetric solutions of (1.1)-
(1.2). We set u = u(r),r = |z| and reduce (1.1)—(1.2) to

(4.1) W P =0, 0<r<l,

(4.2) u'(0) =0, u(l) = 0.

PROPOSITION 4.1. For each integer k > 1 there exists a unique solu-
tion u of (4.1)-(4.2) such that w(0) > 0 and u(r) has exactly k zeros in
[0,1]. Denote it by ux. Then the set of all solutions of (4.1)-(4.2) consists
of ug, —uy, for all k € N and the zero solution. Set By, = I(ux) = I(—ux).
Then it holds that :

HO0<Bi<fo<-- S0

(i) I{ux) = Br and I'(ux) = 0.
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(iii) There exists a constant ¢ > 0 such that

ck?PtD/-1) < B for k € N.

Proof. Instead of (4.1)-(4.2), we consider the initial value problem,

-1
(4.3) w’ + E—T—-w' +rwlPtw =0, 0<r< oo,

(4.4) w'(0) =0, w(0)=1.
This problem has a unique global solution w(r) and it is oscillatory, i.e.,
it has an unbounded sequence of zeros. To check this, we consider the
energy function,
1 1

E(r) = Ew'(r)Qr"" + mhﬂ(r)l”“.
Then o

E'(r)=—-(n+ 5~ Dw'(r)2r1 <0,
which means that E(r) is bounded above. This shows the global exis-
tence of w(r).

Let n > 3. To show that w is oscillatory, we take a change of variable,
t =72, v(t) = tw(r), which reduces (4.3)-(4.4) to
v +a(t)wfPlv =0, t>0,
v'(0) =1, v(0) =0,
where a(t) = (n — 2)~2+2/(=2-p-1_ Gince p < (n +2)/(n — 2) and
o > 0, tP+*3/2g(t) is nondecreasing. By [4, Corollary 10|, the solution

v(t) with a zero at ¢ = 0 is oscillatory. Hence w(r) is also oscillatory.
When n = 2, we set t = logr, v(t) = w(r), which reduces (4.3) to

(4.5) V" + a(t)|v|P v =0, aft) = e 2,
Since [ ta(t)dt = oo, all solutions of (4.5) are oscillatory by [2].

We denote the zeros of the solution w of (4.3)-(4.4) by {tx}, 0 < t; <
ty <tz <--- oo We set

(4.6) w(r) = £y (1),

It is a solution of (4.1)-(4.2) such that u(0) > 0 and it has exactly k zeros
in [0,1]. Such a solution is unique because Ae+2/F=Ny(Ar) (A > 0)
represents any solution of (4.1) with «/(0) = 0 and u(0) > 0. It is clear
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that the set of all solutions of (4.1)-(4.2) consists of ug, —uy, for k € N
and the zero solution.

We show the assertion (i) of Proposition 4.1. Multiplying (4.1) by
u(r)r"~! and integrating by parts, we get

1 1
/ u'(r)2rldr = / [uPHro 1y,
0 0

Therefore we have
(p — 1)“}71 /1 -
4.7 I(y) = —————= ulPHiro =gy

for any solution u of (4.1)-(4.2). Here w, is the surface area of the unit
sphere. This identity with (4.6) gives

(p - l)wn (o4+2)(p+1)/(p—1)—n—0c b +1 -1
B = I(uy) = ——LLg7oPr e w(s)[Prts7t"1ds,
(w) = By [ uts)
which proves the assertion (i) because of (¢+2)(p+1)/(p—1)—n—o0o > 0.

The assertion (ii) is trivial. We show (iii). Let n > 3. We take the
change of variable,

(4.8) t=rt2 () = thu(r),

where 26 = (n — 2)ae+ 1 and o > 1 will be determined later. Then
equation (4:1) is reduced to

(4.9) V' ol - BB -1t =0, 0<t<l,
where v = (0 + 2)a — (p — 1)3 — 2. We need the next lemma.
LEMMA 4.2 ([6, p. 346, Corollary 5.2]). Let q(t) be a continuous func-
tion on [a,b]. Let v(t) # 0 be a solution of the equation,
V' +qt)v=0, tela,b].

Assume that v(t) has exactly k zeros in (a,b]. Then we have
1/2

k< % ((b— 2) /abq+(t)dt> 41,

where ¢* (t) = max{q(t),0}.

We set ¢(t) = &®t"|v(t)]P! — B(B — 1)t2. Since a > 1 will be chosen
very large, we see # > 1, and so we have ¢*(t) < o*t7|v(¢)[P"!. Let v be
a solution of (4.9) corresponding to u;. Then we choose € > 0 so small
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that v has k zeros in [¢,1] and q(t) is continuous on [e,1]. Applying
Lemma 4.2 on [, 1], we get

1/2

(u-fxl}wwa> 41
§(AHMHW%WQU?+L

1 1/2
< \/75_ (/ |u(r)|p_1r”+1_1/°‘dr> +1,
0

where we have used relation (4.8) in the last inequality. We set

k <

Q N o=

<

p=c+1l-1/a—(c+n—-1){p—-1)/(p+1)

and rewrite the last integral into
1
/(|u|p+l,,~a+n-1)(p—l)/(pﬂ)rﬂdr.
0

By Holder’s inequality with exponents (p+1)/(p—1) and (p+1)/2, this
integral is estimated from above by

1 (p-1)/(p+1) 1 2/(p+1)
(/ Iu|p+1ra+n—1dr) (/ ru(p+1)/2d7.> .
0 0

We choose a > 1 so large that u(p+ 1)/2 > —1 and the last integral is
finite. Therefore we have

1
E<C (/ \u|p+17"”+""1dr
0

or equivalently

(p=1)/2(p+1)
)

k—1< Cﬂlgp—l)/z(m‘l),

where C is independent of k. This shows the assertion (iii) except for
k=1.

We show a priori lower bound of any solution of (1.1)-(1.2). Multi-
plying (1.1) by u and integrating by parts, we get

[ 1vutas = [ piatas < [ juprias < o( [ 1vutaa) e
B B B B
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where we have used Sobolev’s inequality. This gives a constant C' > 0
such that

C§/|Vu|2dx=/|u1p+1|x|"dx
B B

for any solution u # 0 of (1.1)-(1.2). This proves (iii) for k = 1.
Let n = 2. The change of variable t = 1/(1 — logr), v(t) = tu(r),
transforms (4.1) to

" 4 7P 3o DD/t -1y, — 0<t<l.
We set
q(t) — t—p—36(0+2)(t—1)/t|v(t)Ip—l
and apply Lemma 4.2 to obtain

([ on) Y

1 1/2
=C (/ lu(r)[P~tro* log(r/e))%lr) +1
0

1 (r-1)/2(p+1) 1 1/(p+1)
<C (/ |u["+1r"“dr) (/ rot| log(r/e)|p+1dr> +1,
0 0

by Hoélder’s inequality. Therefore we obtain the assertion (iii) for n =
2. a

k<

[\

5. Proof of Theorem 1

Our idea to prove Theorem 1 is to make use of the difference be-
tween the distribution of G invariant critical values {ay} and that of the
radially symmetric critical values {8}

Proof of Theorem 1. If G is transitive, any G invariant solution be-
comes a radially symmetric solution. That is, the assertion (i) implies
(i).

We prove the converse by contradiction. Suppose that the condition
(i) holds but (ii) does not. Then there exists an integer ko > 1 such that

{akikao}C{ﬁktk21}.
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If oy = a1 with some k > ko, then (iii) of Proposition 3.2 gives v(K) >
2, where
K ={u € H}B,G): I'(v) =0 and I(u) = ox}.

Since ax = f; with a certain j > 1, we see K = {u;, —u;}. Here u; is the
radially symmetric solution with exactly j zeros. Since the genus of a
finite set is one by definition, it holds that y(K) = 1. This contradiction
shows that {a;} is strictly increasing for k > ko. Therefore we have a
sequence {u(k)} of positive integers such that ok, = Buy for k > 1.
Since {a;} and {0} are strictly increasing, so is {u(k)}, and it holds
that k < p(k) for k > 1. Hence (iv) of Proposition 3.2 and (ili) of
Proposition 4.1 show

C RAP/=1) < B < apg, < Colk + k0)2(p+1)/((n—m)(p—l))‘

This yields a contradiction by letting k — oo because of 0 < m < n—2.
The proof is complete. O

Appendix

Lemma 2.3 can be proved in the same way as [8] with the help of the
next lemma.
LEMMA A.1. Let the operator A be defined in Definition 2.2. Then
A is a self-adjoint operator in L2(B) and has a compact resolvent.
Proof. For u € D(A), we have the identity
(Au,u)ep = —/ Au - udz = || Vull3.
B
Poincaré’s inequality shows
(A1) (ull3, = / u?|z|°dx < / wdz < C||Vu|2  for u € Hy(B).
B B
Here C is a positive constant independent of u. These two inequalities
imply
(A.2) [Vullz < CllAull2,0-

Let Aug = v and {v;} be bounded in L2(B). Then inequality (A.2)
means that {u;} is bounded in H{(B). Therefore {uy} has a convergent
subsequence in L2(B), and so in L2(B). Thus A has a compact resolvent.
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We show that D(A) is dense in L2(B). To this end, we define
X = {u € C°(B) : u(z) = constant near z = 0}.
Then X C D(A) C L2(B). Let u € L2(B) and set

fu (e<]z|<1=-¢)
Ye=1 0  (otherwise).

Then u, converges to u in L2(B) as ¢ — 0. We use a mollifier Js*u, € X,
which is a convolution of Js and u.. Here Js(z) = 6 "J(z/8) with
0 < § < € and J satisfies

JeCPRY, suppJ C B, J=0, / J(z)dz = 1.

Since Jj * u. converges to u. in L2(B) as § — 0, the space X, and D(A)
also, is dense in L2(B). Therefore the adjoint operator A* is well-defined.
We show that A is self-adjoint. For u,v € D(A), the relation

(Au,v)g, = —/ Auvdz = (u, Av)y,,
B

implies that A is a symmetric-operator, i.e., A C A*. Therefore we have
only to prove D(A*) C D(A). Let v € D(A*). Then there exists a
w € L%(B) such that

(Au,v)2o = (u,w)2,  for u € D(A),
or equivalently
(A.3) —/ Auvdz = / wwlz|’de  for u € D(A).
B B
Let Bs = {z € R*: § < |z| < 1} for 0 < § < 1. Relation (A.3) for any
u € C°(Bs) C D(A) shows
—Av = |z|’w a.e. on Bj.

Since 0 < § < 1 is arbitrarily, this relation is valid for a.e. on B, and
Av = —|z|"Av=w € L2

We show that v € H}(B). We set u. = (1+¢eA)!v for € > 0. This
is well-defined because —1/¢ is in the resolvent set of A by (A.1) and
(A.2). It holds that

(A4) ue € D(A),  ltellzo < [[vll20,
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and u, converges to v in L2(B) as ¢ — 0+. Substituting v = wu, into
(A.3), we get

(A.5) ——/Ausvdx:/uewlﬂ"dx.
B B

The definition of u. gives
Ue — €|z 77 Au, = v.
We multiply both sides by —Auwu, to get
—-Augu, < —Au,v.
Since u. € D(A) C H*(B) N H}(B), the integration by parts yields

lueliyen = [ Vuclde < - [ Auvd,
B B

which together with (A.5) and (A.4) shows

1/2 1/2
luelfyey < | [ wilzl"de wzl7dz ) < [ollgollwllze-
3(B) B B

Therefore there exists a sequence {€;} convergent to 0 such that {u,,}
has a weak limit in H}(B). Since u converges to v in L2(B), v is in
H}(B). Consequently, v € D(A). This completes the proof. d

References

(1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point
theory and applications, J. Funct. Anal. 14 (1973), 349-381.

[2] F. V. Atkinson, On second order nonlinear oscillations, Pacific J. Math. 5 (1955),
643-647.

[3] A. Borel, Le plan projectif des octaves et les sphéres comme espaces homogénes,
C. R. Acad. Sci. Paris 230 (1950) 1378-1380.

[4] C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation of solutions
of generalized Emden-Fowler equations, Trans. Amer. Math. Soc. 167 (1972),
399-434.

[5] R. Courant and D. Hilbert, Methods of mathematical physics, Interscience, New
York 1 (1989).

[6] P. Hartman, Ordinary Differential Equations, second edition, Birkhiuser,
Boston, 1982.

[7] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic
Press, San Diego, 1978.



Existence of group invariant solutions 777

(8] R.Kajikiya, Orthogonal group invariant solutions of the Emden-Fowler equation,
To appear in Nonlinear Anal. T.M.A.

[9) D. Montgomery and H. Samelson, Transformation groups of spheres, Ann. of
Math. 44 (1943), 454-470.

[10] P. H. Rabinowitz, Minimaz methods in critical point theory with applications to
differential equations, CBMS Regional Conf. Ser. in Math. Amer. Math. Soc.
Providence 65 (1986).

[11] M. Reed and B. Simon, Methods of modern mathematical physics, IV Analysis
of operators, Academic Press, New York, 1978.

Nagasaki Institute of Applied Science
536 Aba-machi

Nagasaki 851-0193

Japan

E-mail: kajikiya@bas.nias.ac.jp



