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EQUIVARIANT K-GROUPS OF
SPHERES WITH INVOLUTIONS

JIN-HWAN CHO! AND MIKIYA MASUDA

ABSTRACT. We calculate the R((G)-algebra structure on the reduced
equivariant K-groups of two-dimensional spheres on which a com-
pact Lie group ( acts as a reflection. In particular, the reduced
equivariant K-groups are trivial if (7 is abelian, which shows that
the previous Y. Yang’s calculation in [8) is incorrect.

1. Introduction

Let G be a compact Lie group. As one of {stable) equivariant coho-
mology theories, RO(G)-graded cohomology theory has been considered
a full equivariant generalization of ordinary singular cohomology, which
is built in the interplay relating the Burnside ring, the real character
ring RO{G), and G-homotopy theory (see [5] for more details). The
main difference from the other equivariant cohomology theories is that
the coefficient ring is indexed by all virtual real representations instead
of integers, and equivariant K-theory is one of the adequate known ex-
amples.

In 1995, Y. Yang [8] proved that, for any compact Lie group G, the
coefficient groups K3(S°) = Ko(S*) of RO(G)-graded equivariant K-
theory can only have 2-torsion. He calculated the reduced equivariant
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K-groups of 5! and §? with a finite cyelic group G acting as involutions,
and deduced his main result using the Bott periodicity theorem and J. E.
McClure’s resulis [7].

More precisely, if a compact G-space X has a base point * fixed by
the G-action, then the reduced equivariant K-group Ke(X) is defined
to be the kernel of the restriction homomorphism Kg{X) — Kg{+) in-
duced from the inclusion map * — X. In fact, Kg(X) and Ko(X)
are algebras over the complex character ring R(G) (although there is no
identity element in Ke(X)). Let A: G — O(1) = {=1} be a surjective
homomorphism regarded as a one-dimensional real representation of G.
Denote by 1 the trivial ong—dimensional real representation of G. Ac-
tually Y. Yang calculated Kq(S?) and K($1®) for finite cyclic groups
G, where $* and S 12X denate the one-point compactifications of the real
representations A and 1 @ A, respectively.

The authors proved recently in [2, Theorem 10.1} that Ke(8h) is iso-
morphic to the ideal in R(G) generated by (1—X) ®C, which extends Y.
Yang's result [8, Theorem A] for G finite cyclic to any compact Lie group.
Tn this paper we apply the same technique to calculate the R(G)-algebra
structure of I?G(S 182} when G is a compact Lie group. In particular, we
will prove that f{g(S 193] ig trivial for any compact abelian Lie group G,
which shows that Y. Yang’s result [8, Theorem B] is not true.

In the following our main results are stated. Denate by H the kernel
of the real representation A. Given a character X of H and g € G, a new
character 9x of H is defined by 9x(h) = x(g~"hg) for h € H. Choose
and fix an element b € G\ H. Since a character is a class function and
G/H is of order two, by = 9y for all g € G\ H so that by is independent
of the choice of the element b € G\ H. Note that R{H) has a canonical
R(()-module structure given by ¢ - x = resy@ @ X for ¢ € R(G) and
x € R{H).

TuroreM 1.1. Let G be a compact Lie group and let A: G — 0(1)
be a surjective homomorphism. Denote by H the kernel of A and choose
an element b € G\ H. Then K(S') is isomorphic to the R(G)-
module consisting of the elements x — by in R(H) for all characters x of

H. Moreover, the ring structure on K(S' is grven by a8 = 0 for all
elements o, 3 € Kg(S™¥*).
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COROLLARY 1.2. In particular, Kq(S'®) is trivial if there exists an
element in G\ H commuting with all elements in H (for example, G is
abelian}. '

2. Complex Zs-vector bundles over §'92

We will begin by considering the structure of complex Z;-vector bun-
dles over S'®*, In this case A: Zy — O(1) = {1} becomes an isomor-
phism. -

LeEmmA 2.1. Every complex Zs-vector bundle over S*®* decomposes
into the Whitney sum of Zy-invariant sub-line bundles.

Proof. The set of Zy-fixed points in §1** constitutes a circle, denoted
by S', containing 0 and *. Then 5? divides the sphere S'¥* into two
hemispheres, say H, and H. Let F be a complex Zy-vector bundie over
5193, Note that the restriction of £ to the subspace §' C S'®* decom-.
poses into the Whitney sum of Zy-invariant sub-line bundles. Choose
a Zy-invariant sub-line bundle, say F, over S'. Then it is always pos-
sible to extend F to a non-equivariant sub-line bundle over Hj, since
the restriction of £ to H; is non-equivariantly trivial and the set of one-
dimensional subspaces of the fiber is homeomorphic to the Grassmann
manifold Gg(k,1} = CP*1, the fundamental group of which is trivial.
We now extend it over the other hemisphere H, using the Zy-action on
E to get a resulting Zo-invariant sub-line bundle of E. El

LEMMA 2.2, Every complex Zy-vector bundle over 8'®* ig trivial.

Proof. Tt suffices to show that every complex Z,-line bundle E over
S'®A s trivial by Lemma 2.1. Choose two Ze-invariant hemispheres,
denoted by Hy and H, of S'® containing 0 and *, respectively, such
that Hy U H, = S'® and- Hy N H, is a Z,-invariant circle. Since H,
(resp. H.) is equivariantly contractible to 0 (resp. %), F restricted to H
(resp. H,) is equivariantly isomorphic to the product bundle Hy x E,
(resp. H, x E.) where E; (resp. E,) denotes the fiber of E at 0 (resp. ).
Then E induces a Ze-equivariant clutching map of Hy N H, into the set
Hom(Ey, E,) of hinear maps between the two fibers E, and E,. Note
that £y and E, are isomorphic as complex representations of Z, since 0
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and * are connected by Zo-fixed points, and thus the induced Zs-action
on Hom(Fy, E,) is trivial. Since Z; acts on the cirele Hp N H, as a
reflection, the clutching map is equivariantly null-homotopic, that is, £
is equivariantly trivial. O

3. Induced vector bundles

Tn this section we review the notion of induced vector bundles defined
in a way similar to the definition of induced representations.

Let G be a compact Lie group and let X be a G-space. The set
of isomorphism classes of (real or complex) G-vector bundles over X,
usually denoted by Vectg(X), is a semi-group under the Whitney sum
operation. For a closed subgroup H of G, the inclusion map H — G in-
duces a semi-group homomorphism resg : Vectq(X) — Vecty(X) called
the restriction homomorphism, On the other hand, there is another
homomorphism ind%: Vecty(X) — Vectg(X) called the induction ho-
momorphism (see for stance [4] or [6]). In addition, if # has finite
index in (3, then the induction homomorphism can be defined explicitly,
which we will explain below. -

Let E be an H-vector bundle over X. Choose a set of representatives
{to,t1,...,t} of G/H. The identity element of G will always be selected
as fg. Deﬁne a group isomotphism ¢,: gHg ' — H by 1,(ghg™ 1) = h for
he Hand ge G.

We first construct a t; 4 t;‘l—vector bundle #;F over X foreach 0 <1 <
{. Consider the following pull-back diagram

t'WE — E

l l

t_]'
X —/ X
where ;! denotes the action of ;' on X. Since the action of #; Yon X is
u ~equivariant, i.e., t7'(hz) = 1, (h)fl(m) for h € t;Ht7* and z € X, the
pull-back bundle {(t71)*E has a canonical £, Ht; Laction and it becomes
a t;Ht; '-vector bundle over X, simply denoted by £;E. Note that every

element in the fiber of ;E at ¢ € X is represented by #;v for some v
in the fiber of E at t;'z. We now define ind%£ by the Whitney sum
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{without action) of all the bundles #;% and then give a G-action on it as
follows,

Given g € G, each element gt; has a unique form tyh, for some rep-
resentative ¢y € {#y,..., 4} and h; € H. So we define an action of g on

ind§ F by
g- (Zti'uz’) =" ty(hawy).

If 3 t;v; is an element in the ﬁber of ind2F at x € X, then each v, is
contained in the fiber of E at ; 'z and A, is in the fiber of E at t gz
since ht;' = t,'g. Thus the action of g gives a linear map between
the two ﬁbers at xr and gr for all z € X. It is easy to see that the
definition gives actually an action of G on indﬁE. Moreover the action
is compatible with the ¢;H#; '-action already defined on ¢,E.

We next show that the induced bundle is independent of the choice
of the representatives {ty,...,%} of G/H. Choose another set of repre-
sentatives {sq =€, 5y,..., s/} of G/H. We may assume that each 57t is
contained in f by arranging the order of representatives if necessary, and
that every element in the induced bundle constructed with {s0,..., s}
is written by } s, It is easy to check that the bundle map defined
by ¥ tw, — 3 s,(s7',)v; gives an equivariant isomorphism between the
two induced bundles.

LeMMA 3.1. If two H-vector bundles F and E' over X are isomor-
phic, then so are the induced bundles ind5F and ind$,E'. The converse
is not true in general,

Proof. Given an H-vector bundle isomorphism ®y: E — E', the map
®: indfE — ind$ £’
sending }" ¢,v, to 3 £;®Pp(v,) ‘gives a G-vector bundle isomorphism. [

LEMMA 3.2. Let W be a representation of H. Then the induced
bundle of the product bundle X x W — X is isomorphic to the product
bundle X x ind5W — X,

Proof. The construction of induced bundles is the same as that of
induced representations. . O
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LEMMA 3.3. Let I. be a G-vector bundle and let E be an H-vector
bundle over the same base space X. Then L & indgE is isomorphic to
ind% (resgyL ® E).

Proof. For 1l € L and > tw; € indgE, the map
$: L ® indG F — ind%(resy L & E)

sending ! ® S t,v; to Y. t,(£71 ® ) gives a (non-equivariant} vector
bundle map. Given ¢ € G we have gt, = t,h, for some representative t,
and h, ¢ H. Then the equalities

(g @D tw)) = (gl ® D _te(hewe) = 3 te(ti"l © huvs)
= Zti’hz’(ti_ll R, = Z ot, (7 @ vy)
=gP(l® Zt,-vl)

imply that ® is G-equivariant. On the other hand, the inverse bundle
map is given by the map sending 3 ¢;(; ® v;) to Sth@ty) forl; € L
and v; € E. [

4. Decomposition of equivariant vector bundles

In this section we rephrase the relevant material from {2, Section 2]
to decompose equivariant vector bundles for the readers’ convenience.

Let G be a compact Lie group and H a closed normal subgroup of
G. Given a character x of H and ¢ € G, a new character % of H
is defined by %(h) = x(¢7'hg) for h ¢ H. This defines an action of
G on the set Irr(H) of irreducible characters of H. Since a character
is a class function, H acts trivially on Irr(H). Therefore, the isotropy
subgroup of & at x € Irr(H), denoted by G, contains H. We choose a
representative from each G-orbit in Irr(H) and denote by Irr(H)/G the
set of those representatives.

Let X be a connected G-space on which H acts trivially. Then all the
fibers of a G-vector bundle E over X are isomorphic as representations
of H. We call the unique (up to isomorphism) representation of H the
fiber H-representation of F.
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As is well-known, £ decomposes according to irreducible representa-
tions of H. For x & Irr(H), we denote by E(x) the y-isotypical com-
ponent of E, that is, the largest H-subbundle of £ with a multiple
of x as the character of the fiber H-representation. Note that gF(x),
that is F(x) mapped by g € (, is 9y-isotypical component of E. This
means that F(x} is actually a G,-vector bundle and that Beang B0
where ((x) denotes the G-orbit or vy, is a G-subbundle of E. Since
@D cam F(x') is nothing but the induced bundle indng(X), we have
the following decomposition
{*} E= (P indfEX)

xeler(H) /&

as (G-vector bundles.

LeEMma 4.1. Two G-vector bundles E and E’ are isomorphic if and
only if E(x) and E'(x) are isomorphic as G,-vector bundles for each
x € Irr(H)/G. In particular, E is trivial if and only if E(x) is trivial for
each x € Irr(H)/G.

Proof. The necessity is obvious since a G-vector bundle isomorphism
E — FE restricts to a Gy-vector bundle isomorphism E(x) — E'(x),
and the sufficiency follows from the fact that indgx is functorial. a

COROLLARY 4.2. Two G-vector bundles E and E' are stably iso-
morphic if and only if E(x) and E'(x) are stably isomorphic for each
x € r(H)/G. a

The observation above can be restated in K-theory as follows. Denote
by Kg, (X, x) the subgroup of K¢ (X) generated by G,~vector bundles
over X with a multiple of x as the character of fiber H-representations.
The reduced version EGX(X ,X) can be defined accordingly. Then the
map sending E to [ [ y.a/c E(X) gives group isomorphisms

Eg(X)~ ] Ko(X,x) and Kg(X)— Ke, (X, %)
xelee(H)/G x€lrr(HY/G
by Corollary 4.2. '

LEMMA 4.3. If there is a complex G, ~vector bundle L over X with v
as the character of the fiber H-representation, then the map sending E
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to Homy (L, E) gives group isomorphisms
Ka (X,Xx) > Keyu(X) and Kg (X,x)— Kgm(X).
Proof. It is easy to check that the map
K u(X) — Kg,(X,X)
sending F' to L ® F gives the inverse of the map in the lemma. a

REMARK. The lemma above does not hold in the real category in
general, but it does if y is the character of a real irreducible representa-
tion of H with the endomorphism algebra isomorphic to the set of real
numbers.

5. Proof of Theorem 1.1

We now retwrn to our original setting to prove the main result. Here-
after we omit the adjective “complex” for complex vector bundles and
complex representations since we work in the complex category. At first
consider the additive structure on Kq(S'®*).

Let & be a compact Lie group. Denote by H the kernel of the surjec-
tive homomorphism A: G — O(1) = {+1}. Choose and fix an element
be G\ H. Since G, contains H and G/H is of order two, G, is either
H or G for each irreducible character x € Irr(H)/G. Note that, in each
case, the condition of Lemma 4.3 holds, since there exists a G-extension
of x [Proposition 4.2][3] and it gives a trivial G,-vector bundle with x
as the character of the fiber H-representation. Therefore, according to
the arguments in the previous section, we have a group isomorphism
(**) 1?3(81@'\) o H I?(Sa) w H EG/H(SIGM)-

xelr( H) /G xelr(H) /G

st Gy=H st Gy =G
It is well-known that K (S?) is infinite cyclic with generator ( —1, where
¢ and 1, respectively, denote the dual bundle of the canonical line bun-
dle and the trivial line bundle over $% & CP! (see for instance [Theo-
rem 2.3.14)[1]). Moreover, Kgz(S'®) is trivial since G/H = 7 and
every Zo-vector bundle over S*®* is trivial by Lemma 2.2. Therefore
the decomposition () and Lemma 4.3 in the previous section imply the
following lemma.
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LEMMA 5.1. Kq(S®*) is a free abelian group generated by ind% (x ®
(¢ — 1)) for each x € Iir(H)/G such that G, = H. Here, the same
notation x is used for the product H-vector bundle over 5'®* with y as
the character of the fiber representation. 0]

Proof of THEOREM 1.1. We now consider the map
T: Ko(S'Y — R(H)

sending each generator ind$ (x®(—1)) of Eg(Sle*) to x—"x € R(H).
Since both K4(S'®) and R(H) are free abelian groups, ¥ is a well-
defined group homomorphism. Moreover it is injective, since the set of
the elements x — % for all x € Irr(H)/G such that G, = H can be
extended to an additive basis of R(H).

For each x € Irr(H), either G, = H or G. In case that G, = G, we
have x —°¢ = 0. Thus the image of U is generated by the elements y —y
for all x € Irr(H), that is, the R(G}-submodule of R(H) consisting of
the elements x — %y for all characters v of H.

Given a character p of G, as in Lemma 5.1, we use the same notation
 for the product G-vector bundle over S'®* with ¢ as the character of
the fiber representation. Then Lemma 5.3 implies that

¢ ® indf (x ® (¢ — 1)) = ind (resgip ® x ® (¢ —~ 1)).

Since ¥resgip) = resyyp, we have the equalities

U(p ®indG(x ® ({ 1)) = resgp ® x — Yresgp) @ 'x
= resge ® (x — °X)
= - U(indF(x ® (- 1)))

showing that ¥ is an R(G)-module homomorphism.

It remains to show the ring structure on K (@), It suffices to show
that the tensor product of any two generators in Kg(S'®}) is zero. Note
that, given an induced bundle ind%(x ® ¢ J, the image of x ® ¢ mapped
by the b-action, that is the “y-isotypical component of ind%(x & (),
is isomorphic to Py ® ¢* where ¢* denotes the dual bundle of ¢. In-
deed, the pull-back bundle (577)*(¢) is isomorphic to ¢*, since the action
b1 5184 §18) g g reflection so that it induces the multiplication by
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—1 on the second cohomology level. It follows that
resgindg (x ® ((— 1)) =x® (( ~ 1D +x® ("~ 1)
=x® (- -"x&(-1)
={x-"x)® (-1,

since * —1=—{{—1) in K{5%). Therefore, by Lemma 3.3, we have
the equalities

ind% (x ® (¢ — 1)) ® indF (n ® (- 1))
= ind§ (resyind% (x ® (( — 1)) @ n @ (¢ — 1))

=ind§ ({{(x - %) @1 ® (( -~ 1%
-0,

since (¢ — 1)2 = 0 in K(S?) (see [1, Theorem 2.3.14]}. O

Proof of COROLLARY 1.2. By assumption there exists an element

b € G\ H such that bh = hb for all € H. It follows that *x(h) =
x(b~1hb) = x(h) for any character x of H, which completes the proof.
a
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