WEIGHTED ORLICZ SPACE INTEGRAL INEQUALITIES FOR POTENTIAL MAXIMAL OPERATORS

YONG MAL KIM AND YOON JAE YOO

ABSTRACT. We characterize a condition for \mathcal{M}_{φ} to be of weak type (Φ_1, Φ_2) in terms of Orlicz norms.

1. Introduction

Given a function f in \mathbb{R}^n , we define a function $\mathcal{M}f$ in \mathbb{R}^{n+1} = $\{(x,s): x \in \mathbb{R}^n, s \geq 0\}$ by setting

$$\mathcal{M}f(x,s) = \sup \left\{ rac{1}{|Q|} \int_Q |f(y)| \, dy : x \in Q \, \, ext{and sidelength}(Q) \geq s
ight\}.$$

It is well known that this maximal operator \mathcal{M} controls the Poisson integral defined by, for $x \in \mathbb{R}^n$ and $s \geq 0$,

$$P(f)(x,s) = \int_{\mathbb{R}^n} f(y) P(x-y,s) \, dy,$$

where

$$P(x,s) = \frac{c_n s}{(|x|^2 + s^2)^{n+1/2}}$$

is the Poisson kernel. For a given positive measure ν on $\mathbb{R}^n \times [0, \infty)$, under what condition on ν can we assert that \mathcal{M} is bounded from $\mathcal{L}^p(\mathbb{R}^n)$ into weak- $\mathcal{L}^p(\mathbb{R}^n \times [0, \infty), \nu)$? Carleson([3]) showed that this was equivalent to the Carleson condition and later Feffermann-Stein([5]) found a sufficient condition, and Ruiz([13]), Ruiz-Torrea([14]) unified all these

Received January 15, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 42B25.

Key words and phrases: maximal operator, Orlicz norm.

This research is supported by Kyungpook National University Fund, 2000.

results. Recently, Gallardo([6]) and Chen([4]) obtained characterizations in terms of the Orlicz norm and in [8], we obtained a characterization for the fractional maximal operator. In this paper, we characterize a condition for \mathcal{M}_{φ} to be of weak type (Φ_1, Φ_2) having four weights in the Orlicz norm. In the next theorem, we shall assume that φ is essentially nondecreasing, i.e., there exists a positive constant ρ for which

$$\varphi(t) \le \rho \varphi(s), \ t \le s$$

and

$$\lim_{t o\infty}rac{arphi(t)}{t}=0\,.$$

Our result is as follows.

THEOREM 3.1. Let $\mathcal{M}_{\varphi}f$ be the potential maximal operator on \mathbb{R}^{n+1}_+ . $\mathcal{M}_{\varphi}f$ is defined by

$$\mathcal{M}_{\varphi}f(x,s) = \sup_{x \in Q} \frac{\varphi(|Q|)}{|Q|} \int_{Q} |f(y)| \, dy, \quad l(Q) \geq s \,,$$

where l(Q) denotes the sidelength of Q. Let u,v be weights on \mathbb{R}^n , w be a weight on \mathbb{R}^{n+1} and μ be a nonnegative measure on \mathbb{R}^{n+1} . Φ_1 and Φ_2 are N-functions with complementary N-functions Ψ_1 and Ψ_2 , respectively. Assume further that $\Phi_2 \circ \Phi_1^{-1}$ is convex. Then weak type boundedness, i.e.,

$$\Phi_{2}^{-1} \left[\int_{\{(x,s) \in \mathbb{R}_{+}^{n+1} : \mathcal{M}_{\varphi}f(x,s) > \lambda\}} \Phi_{1}(C|f(x)|u(x)) d\mu(x,s) \right] \leq \Phi_{1}^{-1} \left[\int_{\mathbb{R}^{n}} \Phi_{1}(C|f(x)|u(x)) v(x) dx \right]$$

holds if and only if

(3)
$$\int_{Q} \Psi_{1} \left[\frac{\gamma(\lambda, \widetilde{Q})}{C\lambda u(y)v(y)} \frac{\varphi(|Q|)}{|Q|} \right] v(y) \, dy \leq \gamma(\lambda, \widetilde{Q}) < \infty$$

holds for each cube Q, where

$$\gamma(\lambda, \tilde{Q}) = \Phi_1 \circ \Phi_2^{-1} \left[\int_{\tilde{Q}} \Phi_2 \Big(\lambda w(x, s) \Big) \, d\mu(x, s) \right], \ \ \tilde{Q} = Q \times \Big(0, l(Q) \Big].$$

When $\varphi(|Q|)=1$, the Hardy-Littlewood maximal operator is obtained. The fractional maximal operator $\mathcal{M}_{\alpha}(0<\alpha< n)$ is given by $\varphi(|Q|)=|Q|^{\frac{\alpha}{n}}$. Maximal operators connected to the Bessel potential operator are defined by $\varphi(|Q|)=\int_0^{|Q|^{\frac{1}{n}}}\psi(s)\,ds$, where ψ is the derivative of φ .

2. Preliminaries

DEFINITION 2.1. Let $\Phi:[0,\infty)\to\mathbb{R}$ be a function satisfying

- (i) $\Phi(s) > 0$ for all $s \ge 0$;
- (ii) $\lim_{s\to 0} \Phi(s)/s = 0$;
- (iii) $\lim_{s\to\infty} \Phi(s)/s = \infty$.

Then Φ is called an N-function. Each N-function has the integral representation: $\Phi(s) = \int_0^s \phi(t) \, dt$, where $\phi(s) > 0$ for s > 0, $\phi(0) = 0$ and $\phi(s) \to \infty$ as $s \to \infty$. Further, ϕ is right-continuous and nondecreasing. ϕ is called the density function of Φ . Define $\rho: [0, \infty) \to \mathbb{R}$ by $\rho(t) = \sup\{s: \phi(s) \le t\}$. Then ρ is called the generalized inverse of ϕ . Finally, define

$$\Psi(t) = \int_0^t \rho(s) \, ds$$

and Ψ is called the complementary N-function of Φ . For further details, see [10].

Definition 2.2. An N-function Φ is said to satisfy the Δ_2 -condition in $[0,\infty)$ if $\sup_{s>0} \frac{\Phi(2s)}{\Phi(s)} < \infty$.

REMARK 1. If ϕ is the density function of Φ , then Φ satisfies the Δ_2 -condition if and only if there exists a constant $\alpha > 1$ such that $s \phi(s) < \alpha \Phi(s)$, for any s > 0.

REMARK 2. If Ψ is the complementary N-function of Φ , then $st \leq \Phi(s) + \Psi(t)$ for all $s, t \geq 0$. Futher, = holds if and only if $\phi(s-) \leq t \leq \phi(s)$ or else $\rho(t-) \leq s \leq \rho(t)$.

DEFINITION 2.3. Let (X, \mathcal{M}, μ) is a σ -finite measure space and Φ be an N-function. Then the Orlicz space $\mathcal{L}_{\Phi}(d\mu)$ and $\mathcal{L}_{\Phi}^*(d\mu)$ are defined by

 $\mathcal{L}_{\Phi}(d\mu) = \left\{ f : \int_{Y} \Phi(|f|) \, d\mu < \infty \right\}$

and

$$\mathcal{L}_{\Phi}^*(d\mu) = \left\{ f : fg \in \mathcal{L}_1(d\mu) \quad \text{for all} \quad g \in \mathcal{L}_{\Psi} \right\},$$

where Ψ is the complementary N-function of Φ .

Keeping these definitions and notions, the following properties about the Orlicz space will be used in the proof of the Theorem 3.1.

Proposition 2.4.

(i) The Orlicz space $\mathcal{L}_{\Phi}^{*}\left(d\mu\right)$ is a Banach space with the Orlicz norm

$$\|f\|_\Phi = \sup \left\{ \int |fg|\, d\mu : g \in \mathcal{S}_\Psi
ight\},$$

where $\mathcal{S}_{\Psi}=\left\{g\in\mathcal{L}_{\Psi}:\int\Psi(|g|)\,d\mu\leq1\right\},$ or with the Luxemburg norm

$$\|f\|_{(\Phi)} = \inf \left\{ \lambda > 0 : \int \Phi\Bigl(rac{|f|}{\lambda}\Bigr) \, d\mu \leq 1
ight\}.$$

(ii) (Hölder's inequality) If $f \in \mathcal{L}_{\Phi}^{*}(d\mu)$ and $g \in \mathcal{L}_{\Psi}^{*}(d\mu)$, then

(5)
$$||fg||_{\Phi} \leq 2||f||_{(\Phi)}||g||_{(\Psi)}.$$

(iii) (Young's inequality)

(6)
$$ab \leq \Phi(a) + \Psi(b)$$
 for all $a, b > 0$.

LEMMA 2.5. Let Φ be an N-function with complementary function Ψ . Let x and y > 0. Then

(7)
$$\Phi(x) \le x\phi(x) \le \Phi(2x),$$

(8)
$$\Phi(x) + \Phi(y) \le \Phi(x+y)$$

and

(9)
$$\Phi\left[\frac{\Psi(x)}{x}\right] \leq \Psi(x).$$

LEMMA 2.6. Suppose that f is an integrable function in \mathbb{R}^n . For each $\lambda > 0$, let $E_{\lambda} = \{(x,s) \in \mathbb{R}^{n+1}_+ : M_{\varphi}f(x,s) > \lambda\}$. Then, if E_{λ} is not empty, we have

(10)
$$E_{\lambda} \subset \bigcup_{i} \widetilde{Q_{j}^{3}},$$

where Q_j is the family of nonoverlapping maximal dyadic cubes satisfying

(11)
$$\frac{\lambda}{4^n \rho} < \frac{\varphi(|Q_j|)}{|Q_j|} \int_{Q_j} f(y) \, dy \le \frac{\lambda}{2^n}$$

for each integer j. Furthermore, we have that

$$\left\{x \in \mathbb{R}^n : M_{\varphi}^d f(x) > \frac{\lambda}{4^n \rho}\right\} = \bigcup_j Q_j.$$

Proof. Following [7](p.160), we let $C_{\lambda} = \{P_j\}$ be the family of the dyadic maximal nonoverlapping cubes satisfying the condition

$$\lambda < rac{arphi(|P_j|)}{|P_j|} \int_{P_j} f(y) \, dy.$$

To show that there is such a family C_{λ} , observe that

$$\frac{\varphi(|Q|)}{|Q|} \int_{Q} f(y) \, dy \to 0$$

as $Q \uparrow \mathbb{R}^n$, since f is integrable and since $\lim_{t\to\infty} \varphi(t)/t = 0$. If, for some dyadic cube Q,

$$\lambda < rac{arphi(|Q|)}{|Q|} \int_{Q} f(y) \, dy,$$

then Q is contained in dyadic cubes satisfying this condition, which are maximal with respect to the inclusion. Thus, there is a family of maximal nonoverlapping dyadic cubes $\{P_j\}$ yield

(12)
$$\lambda < \frac{\varphi(|P_j|)}{|P_j|} \int_{P_j} f(y) \, dy \le 2^n \rho \frac{\varphi(|P_j'|)}{|P_j'|} \int_{P_j'} f(y) \, dy \le 2^n \rho \lambda,$$

where P'_{j} denotes the only dyadic cube containing P_{j} . From this discussion, it is clear that

$$\{x \in \mathbb{R}^n : M_{\varphi}^d f(x) > \lambda\} = \bigcup_j P_j.$$

Let $(x,s) \in E_{\lambda}$; by definition, there is a cube R containing x with $l(R) \geq s$ such that

 $\lambda < \frac{\varphi(|R|)}{|R|} \int_{R} f(y) \, dy.$

Let k be the unique integer such that $2^{(k+1)n} < |R| \le 2^{-kn}$. There are some dyadic cubes with side length 2^{-k} , and at most 2^n of them, $\{J_i: i=1,\ldots,2^n\}$ meeting the interior of R. It is easy to see that, for one of these cubes, say J_1 ,

$$\frac{\lambda}{2^n} < \frac{\varphi(|R|)}{|R|} \int_{R \cap J_1} f(y) \, dy.$$

Now, since $|R| \le |J_1| < 2^n |R|$, $\varphi(|R|) \le \rho \varphi(|J_1|)$ and

$$\frac{\lambda}{4^n}|J_1|<\frac{\lambda}{2^n}|R|<\varphi(|R|)\int_{R\cap J_1}f(y)\,dy\leq \rho\varphi(|J_1|)\int_{J_1}f(y)\,dy.$$

Hence,

$$\frac{\lambda}{4^n\rho} < \frac{\varphi(|J_1|)}{|J_1|} \int_{J_1} f(y) \, dy.$$

By letting $C_{t/4^n\rho}=\{Q_j\}$, we see that $J_1\subset Q_k$, for some k, and $x\in R\subset J_1^3\subset Q_k^3$.

On the other hand, $s \leq l(R) \leq l(Q_j^3)$. From this, we conclude that

$$E_{\lambda} \subset \bigcup_{j} \widetilde{Q_{j}^{3}}.$$

Finally, it follows from (12) that

$$\frac{\lambda}{4^n\rho}<\frac{\varphi(|Q_j|)}{|Q_j|}\int_{Q_j}f(y)dy\leq \frac{\lambda}{2^n},$$

for each j, concluding the proof of the lemma.

3. Main Results

THEOREM 3.1. Let $\mathcal{M}_{\varphi}f$ be the potential maximal operator on \mathbb{R}^{n+1}_+ . $\mathcal{M}_{\varphi}f$ is defined by

$$\mathcal{M}_{arphi}f(x,s) = \sup_{x \in Q} rac{arphi(|Q|)}{|Q|} \int_{Q} |f(y)| \, dy, \; \; ext{where} \; \; l(Q) \geq s.$$

Let u and v be weights on \mathbb{R}^n , w be a weight on \mathbb{R}^{n+1} and μ be a nonnegative measure on \mathbb{R}^{n+1} . Φ_1 and Φ_2 are N-functions with complements Ψ_1 and Ψ_2 , respectively. Assume further that $\Phi_2 \circ \Phi_1^{-1}$ is convex. Then weak type boundedness, i.e.

holds if and only if

$$\int_{Q} \Psi_{1} \left[\frac{\gamma(\lambda, \widetilde{Q})}{C\lambda u(x)v(x)} \frac{\varphi(|Q|)}{|Q|} \right] v(x) dx \leq \gamma(\lambda, \widetilde{Q}) < \infty$$

holds for each cube Q, where

$$\gamma(\lambda, ilde{Q}) = \Phi_1 \circ \Phi_2^{-1} \left[\int_{ ilde{Q}} \Phi_2 \Big(\lambda w(x,s) \Big) \, d\mu(x,s)
ight], \;\; ilde{Q} = Q imes \Big(0, l(Q) \Big].$$

Proof. For the necessity, we follow the idea of [2]. Since $\frac{\Psi_1(\varepsilon)}{\varepsilon}$ is increasing in ε and has full range \mathbb{R}^+ , for given $\lambda > 0$, we can choose ε such that

$$egin{split} \int_E \Psi_1\left(rac{arepsilon}{u(y)v(y)}
ight)rac{v(y)}{arepsilon}\,dy &= 2C\lambdarac{|Q|}{arphi(|Q|)},\ \ E\subset Q \ \ f(x) &= rac{1}{C}\Psi_1\left(rac{arepsilon}{u(x)v(x)}
ight)rac{v(x)}{arepsilon}\chi_E(x). \end{split}$$

If $(y,s) \in \tilde{Q}$, then $y \in Q$ and $s \leq l(Q)$. So

$$\mathcal{M}_{\varphi}f(y,s) = \sup_{y \in Q} \frac{\varphi(|Q|)}{|Q|} \int_{Q} |f(y)| \, dy$$

$$\geq \frac{\varphi(|Q|)}{|Q|} \int_{Q} |f(y)| \, dy$$

$$= \frac{\varphi(|Q|)}{|Q|} \int_{Q} \frac{1}{C} \Psi_{1} \left(\frac{\varepsilon}{u(y)v(y)}\right) \frac{v(y)}{\varepsilon} \chi_{E}(y) \, dy$$

$$= 2\lambda > \lambda.$$

Thus if $(y,s) \in \tilde{Q}$, then $(y,s) \in E_{\lambda} = \{(x,r) \in \mathbb{R}^{n+1}_+ : \mathcal{M}_{\varphi}f(x,r) > \lambda\}$. Hence

$$\begin{split} \gamma(\lambda, \tilde{Q}) &= \Phi_1 \circ \Phi_2^{-1} \left[\int_{\tilde{Q}} \Phi_2 \Big(\lambda w(x,s) \Big) \, d\mu(x,s) \right] \\ &\leq \Phi_1 \circ \Phi_2^{-1} \left[\int_{\{\mathcal{M}_{\varphi} f > \lambda\}} \Phi_2 \Big(\lambda w(x,s) \Big) \, d\mu(x,s) \right] \\ &\leq \int_E \Phi_1 \left[\frac{u(y)v(y)}{\varepsilon} \Psi_1 \left(\frac{\varepsilon}{u(y)v(y)} \right) \right] v(y) dy \\ &\leq \int_E \Psi_1 \left(\frac{\varepsilon}{u(y)v(y)} \right) v(y) \, dy \\ &= 2C\lambda \frac{|Q|}{\varphi(|Q|)} \varepsilon. \end{split}$$

The third inequality follows from (2). Put

$$\Delta = \int_{E} \psi_{1} \left(\frac{\gamma(\lambda, \tilde{Q})}{4C\lambda u(y)v(y)} \frac{\varphi(|Q|)}{|Q|} \right) \frac{1}{u(y)} dy.$$

Then

$$\begin{split} \Delta & \leq \int_{E} \psi_{1} \left(\frac{\varepsilon}{2u(y)v(y)} \right) \frac{1}{u(y)} \, dy \\ & \leq 2 \int_{E} \Psi_{1} \left(\frac{\varepsilon}{u(y)v(y)} \right) \frac{v(y)}{\varepsilon} \, dy \\ & = 4C\lambda \frac{|Q|}{\varphi(|Q|)}. \end{split}$$

Also

$$\Delta \geq \frac{4C\lambda|Q|}{\varphi(|Q|)\gamma(\lambda,\tilde{Q})} \int_{E} \Psi_{1} \left[\left(\frac{\gamma(\lambda,\tilde{Q})}{4C\lambda u(y)v(y)} \right) \frac{\varphi(|Q|)}{|Q|} \right] v(y) \, dy.$$

Thus

$$\int_E \Psi_1 \left[\left(\frac{\gamma(\lambda,\tilde{Q})}{4C\lambda u(y)v(y)} \right) \frac{\varphi(|Q|)}{|Q|} \right] v(y) \, dy \leq \gamma(\lambda,\tilde{Q}) < \infty.$$

As $E \to Q$, (3) holds.

For the sufficiency, we follow the idea of [4] and [11]. From Lemma 2.6, for each $\lambda > 0$, let $E_{\lambda} = \{(x,s) \in \mathbb{R}^{n+1}_+ : M_{\varphi}f(x,s) > \lambda\}$. Then, if E_{λ} is not empty, we have

$$E_{\lambda}\subset \bigcup_{j}\widetilde{Q_{j}^{3}},$$

where Q_j is the family of nonoverlapping maximal dyadic cubes satisfying

$$\frac{\lambda}{4^n \rho} < \frac{\varphi(|Q_j|)}{|Q_j|} \int_{Q_j} f(y) \, dy \le \frac{\lambda}{2^n}$$

for each integer j. Then $\frac{\lambda}{4^n\rho} < \frac{\varphi(|Q_j|)}{|Q_j|} \int_{Q_j} f(y) \, dy$ and $\left\{\widetilde{Q_j^3}\right\}$ is a covering of E_{λ} . Hence it follows from (6) that

$$\begin{split} 2\gamma(\lambda,\widetilde{Q_{j}^{3}}) &\leq \int_{Q_{J}} \frac{4^{n}\rho|f(x)|}{\lambda} \frac{\varphi(|Q_{j}|)}{|Q_{j}|} 2\gamma(\lambda,\widetilde{Q_{j}^{3}}) \, dx \\ &= \int_{Q_{J}} 23^{n}4^{n}C\rho|f(x)|u(x) \frac{\gamma(\lambda,\widetilde{Q_{j}^{3}})}{C\lambda u(x)v(x)} \frac{\varphi(|Q_{j}^{3}|)}{|Q_{j}^{3}|} v(x) \, dx \\ &\leq \int_{Q_{J}} \Phi_{1} \Big(23^{n}4^{n}C\rho|f(x)|u(x)\Big)v(x) \, dx \\ &+ \int_{Q_{J}} \Psi_{1} \left(\frac{\gamma(\lambda,\widetilde{Q_{j}^{3}})}{C\lambda u(x)v(x)} \frac{\varphi(|Q_{j}^{3}|)}{|Q_{j}^{3}|}\right) v(x) \, dx \\ &\leq \int_{Q_{J}} \Phi_{1} \Big(23^{n}4^{n}\rho C|f(x)|u(x)\Big)v(x) \, dx + \gamma(\lambda,\widetilde{Q_{j}^{3}}). \end{split}$$

$$\gamma(\lambda, \widetilde{Q_{\jmath}^3}) \leq \int_{Q_{\jmath}} \Phi_1(23^n 4^n C
ho |f(x)| u(x)) v(x) \, dx$$

and thus

$$\int_{\widetilde{Q}_{j}^{3}}\left(\Phi_{2}\left(\lambda w(x,s)\right)\right)d\mu(x,s)\leq\Phi_{2}\circ\Phi_{1}^{-1}\left[\int_{Q_{j}}\Phi_{1}\left(23^{n}4^{n}C\rho|f(x)|u(x)\right)v(x)\,dx\right].$$

Summing over j gives

By using that $\Phi_2 \circ \Phi_1^{-1}$ is convex, this last sum is bounded by

$$\begin{split} &\Phi_2 \circ \Phi_1^{-1} \bigg[\sum_j \int_{Q_j} \Phi_1 \Big(23^n 4^n C \rho |f(x)| u(x) \Big) v(x) \, dx \bigg] \\ &\leq \Phi_2 \circ \Phi_1^{-1} \bigg[C_n' \int_{\mathbb{R}^n} \Phi_1 \Big(23^n 4^n C \rho |f(x)| u(x) \Big) v(x) \, dx \bigg] \\ &\leq \Phi_2 \circ \Phi_1^{-1} \bigg[\int_{\mathbb{R}^n} \Phi_1 \Big(C_n |f(x)| u(x) \Big) v(x) \, dx \bigg]. \end{split}$$

COROLLARY 3.2. From (3), put $w=u=1, \Phi_1=\Phi_2$. Then (3) gives

$$\begin{bmatrix} 13) \\ \left[\mu(\tilde{Q}) \frac{\varphi(|Q|)}{|Q|} \right] \phi \left[\frac{\varphi(|Q|)}{C|Q|} \int_{Q} \psi\left(\frac{\varepsilon}{v(y)}\right) dy \right] \leq C\varepsilon, \quad \text{for each} \quad \varepsilon > 0.$$

Proof. We follow the proof of Corollary 3.2 of [8]. \Box

COROLLARY 3.3. If $\Phi_1 \circ \Phi_2^{-1}$ has the Δ' condition and (3) holds for w = u = 1, then there exist constants C', C'' > 0 such that, for any $\varepsilon > 0$,

$$(14) \qquad \Phi_{1}\circ\Phi_{2}^{-1}\Big(\mu(\tilde{Q})\Big)\frac{\varphi(|Q|)}{|Q|}\phi_{1}\bigg[\frac{C'}{|Q|}\int_{Q}\psi_{1}\Big(\frac{\varepsilon}{v(y)}\Big)\,dy\bigg]\leq C''\varepsilon.$$

622

Proof. We follow the proof of corollary 3.3 of [8].

EXAMPLE 3.4. Let $\varphi(|Q|) = 1$ and $\varepsilon = \frac{1}{t}$. From Corollary 3.2, (13) gives A_{Φ}^+ of [4], i.e.

$$\sup_{Q,t>0}\phi\bigg[\frac{1}{|Q|}\int_{Q}\psi\Big(\frac{1}{tv(x)}\Big)dx\bigg]\frac{t\mu(\tilde{Q})}{|Q|}<\infty.$$

But (13) is weaker than A_{Φ}^+ , because an N-function Φ of A_{Φ}^+ in [4] satisfies the Δ_2 -condition.

EXAMPLE 3.5. From Corollary 3.3, put $d\mu(x,t) = u(x)dx \otimes d\delta(t)$, where δ is the Dirac mass on $[0,\infty)$, concentrated at 0. Also set $\Phi_1(x) = \frac{x^p}{p}$ and $\Phi_2(x) = \frac{x^q}{q}$, where $1 . Then (14) gives <math>(u,v) \in A(\varphi,p,q)$ of [12], i.e.

$$\varphi\Big(|Q|\Big)|Q|^{\frac{1}{q}-\frac{1}{p}}\left[\frac{1}{|Q|}\int_{Q}u(x)\,dx\right]^{\frac{1}{q}}\left[\frac{1}{|Q|}\int_{Q}v(x)^{-\frac{1}{p-1}}\,dx\right]^{1-\frac{1}{p}}\leq A\quad\text{for all}\quad Q.$$

References

- S. Bloom and R. Kerman, Weighted L_♥ integral inequalities for operators of Hardy type, Studia Math. 110 (1994), 35-52.
- [2] ______, Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator, Studia Math. 110 (1994), 149-167.
- [3] L. Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. Math. 76 (1962), 547-559.
- [4] Jie-Cheng Chen, Weighted and L_Φ-boundedness of the Poisson integral operator, Israel J. Math. 81 (1993), 193-202.
- [5] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115.
- [6] D. Gallardo, Weighted weak type integral inequality for the Hardy-Littlewood maximal operator, Israel J. Math. 67 (1989), 95-108.
- [7] J. Garcia-Cuerva and J. L. Rubio De Francia, Weighted Norm Inequalities and Related Topics, Elsevier Science, North-Holland, 1985.
- [8] Yong Mal Kim and Yoon Jae Yoo, Weighted Orlicz space integral inequalities for fractional maximal operators, Far East J. Math. Sci. 5 (1997), no. 2, 225-236.

- [9] B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 191 (1974), 261-274.
- [10] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034 (1983).
- [11] C. P'erez, Two Weighted Inequalities for Potential and Fractional Type Maximal Operators, Indiana University Mathematics Journal 43 (1994), no. 2.
- [12] Y. Rakotondratsimba, Weighted Norm Inequalities for Maximal Functions from the Muckenhoupt conditions, Publications Matematiques 38 (1994), 25-36
- [13] F. Ruiz, A unified to Carleson measures and A_p weights, Pacific J. Math. 117 (1985), 397-404.
- [14] F. J. Ruiz and J. L. Torrea, A unified approach to Carleson measures and Ap weights II, Pacific J. Math. 117 (1985).

Department of Mathematics Education Kyungpook National University Taegu 702-701, Korea E-mail: yjyoo@kyungpook.ac.kr