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WEIGHTED ORLICZ SPACE
INTEGRAL INEQUALITIES FOR
POTENTIAL MAXIMAL OPERATORS

Yong MaL Kiv AND YooN JAE Yoo

ABSTRACT. We characterize a condition for M, to be of weak type
{®1,P3) in terms of Orlicz norms.

1. Introduction

Given a function f in R™, we define a function Mf in RT’I =
{(z,8) : z € R", s > 0} by setting

Mz, s) =sup {ﬁ /(;) |f{¥)|dy : « € @ and sidelength(Q) > s} .

It is well known that this maximal operator M controls the Poisson
integral defined by, for z € R” and 5 > 0,

P(P@s) = [ f0)P-u,9)d,

where
Cr 8

(jx]2 + s2)nt1/2

is the Poisson kernel. For a given positive measure v on R™ x [0, 00), un-
der what condition on v can we assert that M is bounded from £P(R")
into weak-LP(R" x [0, 00), #)? Carleson([3]) showed that this was equiv-
alent to the Carleson condition and later Feffermann-Stein([5)) found a
sufficient condition, and Ruiz([13]), Ruiz-Torrea([14]) unified all these

P(z,s)=
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results. Recently, Gallardo([6]) and Chen{[4]) obtained characteriza-
tions in terms of the Orlicz norm and in [8], we obtained a characteriza-
tion for the fractional maximal operator. In this paper, we characterize
a condition for M, to be of weak type (@1, ®2) having four weights
in the Orlicz norm. In the next theorem, we shall assume that ¢ is
essentially nondecreasing, 1.e.. there exists a positive constant p for
which

p(t) < pp(s), t <
and ;
lim M = 0.

t—oo  F
Our result is as follows.

THEOREM 3.1. Let M, f be the potential maximal operator on
R, M, f is defined by

_ Q) .
W) M) = T ]Q Py, HQ) = s,

where 1{Q) denotes the sidelength of . Let u,v be weights on R™, w

be a weight on R"’j_“ and p be a nonnegative measure on R’f“l. Py
and ®, are N-functions with complementary N-functions ¥y and W,
respectively. Assume further that $z 0 tI>1_1 is convex. Then weak type
boundedness, i.e.,

(2)
@;1[/{ @5 (\u(z, 5)) dpu(z,5)| < @;ﬂ/y %, (C1f (2} u(z))v(z) da

(w,8) R M, Fz.8)>A)

holds if and only if

r}'()\:é) ‘ro(lQD ’ , -y 00
(3) /Q‘h {Cm(y)v(y) 0] ]v(y) dy < v(AQ) <

holds for each cube (Q, where
(4)

v(A, Q) = By 0 077 UQ o, (Aw(:c,s)) d}i(w,s)l L 0=0x (o,z(Q)].
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When ¢(|Q[) = 1, the Hardy-Littlewood maximal operator is ob-
tained. The fractional maximal operator M,(0 < a < n) is given
by ©(|@]) = |@|=. Maximal operators connected to the Bessel poten-

Q%

tial operator are defined by ¢(|Q[) = f;~ ¢(s)ds, where ' is the

derivative of .

2. Preliminaries

DEFINITION 2.1. Let & :[0,00) — R be a function satisfying
(i) ®(s) > 0 for all s > 0;

(ii) limg ;0 ®{s)/s = 0;

(iii) limy o0 ®(8)/s = oo

‘Then @ is called an N-function. Each N-function has the integral
representation: ®(s) = fos @(t) dt, where ¢(s) > 0 for 5 > 0,4(0) = 0
and ¢(s) — oo as s — co. Further, ¢ is right-continuous and nonde-
creasing. ¢ is called the density function of ®. Define p: [0,00) — K

by p(t) = sup{s : ¢(s) < ¢}. Then p is called the generalized inverse of
¢. Finally, define

W(t) = /D (s ds

and ¥ is called the complementary N-function of ®. For further details,
see [10].

DEFINITION 2.2, An N-function ® is said to satisfy the As-condition

in [0, 00) if sup,. %f'%) < o0.

REMARK 1. If ¢ is the density function of ®, then @ satisfies the

Ag-condition if and only if there exists a constant o > 1 such that
sd(s) < a®(s), for any s > 0.

REMARK 2. If ¥ is the complementary N-function of ®, then st <
B(s) + ¥(t) for all s,¢ > 0. Futher, = holds if and only if ¢{s—) <t <
¢(s) or else p(t—) < 5 < p(f).
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DEFINITION 2.3. Let (X, M, 11) is a o-finite measure space and ® be
an N-function. Then the Orlicz space La{dy) and £} (dp) are defined
by

Lotdw) = {1+ [ 20r)dn< o}
and
Ly{dp) ={f: fg e Li(dp) forall ge Ly},
where ¥ is the complementary N-function of ®.

Keeping these definitions and notions, the following properties about
the Orlicz space will be used in the proof of the Theorem 3.1.

ProOPOSITION 2.4,

(i) The Orlicz space L} (du) is a Banach space with the Orlicz
norm

1£lls =sup{]|fg|du ge s\p},

where Sy = {g € Lo : [¥(|g])dp < 1}, or with the Luxem-
burg norm

1 Flice) *inf{)\ >0: /@(%) dp < 1}.

(ii) (Holder’s inequality) If f € LF (du) and g € L3, (du), then

(5) Ifglle < 2[fll@llgllce)-
(iii) (Young’s inequality)
(6) ah < ®(a) +U(b) forall a,b>0.

LEMMA 2.5. Let ® be an N-function with complementary function
U. Let ¢ and y > 0. Then

(7 ®(z) < xd(z} < B(2x),
(8) P(x) 4+ B(y) < B(z +y)
and

(9) ¢ f'(f)} < U(z).
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LEMMA 2.6. Suppose that f is an integrable function in R™. For
each A > 0, let By = {(z,s) € R} : M, f(z,s) > A}. Then, if Ey is
not empty, we have

(10) By C U@?

where Q; is the family of nonoverlapping maximal dyadic cubes satis-
fving

(11) ©(1Q;1) A

- d -
o TN ij(y) VS o

for each integer j. Furthermore, we have that
A
{1‘ e R™ . Mgf(i{.’) > Z’EE} = UQJ
3

Proof. Following [7](p.160), we let Cy = {P;} be the family of the
dyadic maximal nonoverlapping cubes satisfying the condition

lfJDf iy

To show that there is such a family Cy, observe that

Wl(gl) fo(y)d

as ¢ T R", since f is integrable and since lim;_, o p(t)/t = 0. If, for
some dyadic cube @,

Q

| ) f(

then ¢} is contained in dyadic cubes satisfying this condition, which
are maximal with respect to the inclusion. Thus, there is a family of
maximal nonoverlapping dyadic cubes {P,} yield

(12) A<M fly)dy <27 ) f()dyS?npf\,
‘Pl Jp, PPy

2
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where Pj' denotes the only dyadic cube containing P;. From this dis-
cussion, it is clear that

fxe®: Mif(z)> =P
J

Let (z,s) € E); by definition, there is a cube B containing z with

I{R) > s such that
R
r< B [

Let k be the unique integer such that 2(:+1" < |R, < 27F* There
are some dyadic cubes with side length 2~k and at most 2™ of them,
{J;:i=1,...,2"} meeting the interior of X. Tt is easy to see that, for
one of these cubes, say Ji,

A pllR)

— = fly) dy.
Tl A

Now, since |R| < |Ji] < 2"|R|, «{|R]) < pp(h]) and

A A
Aini< MRI<oOR) [ fdu<oaiD [ 5

Hence,
A < oflJ1])

1mp | J1]

By letting Cypqnp, = {Q,}, we see that Jy C Q. for some k, and
zreRCJPC Qi

On the other hand, s < I(R) < {Q3). From this, we conclude that

fly) dy.
J1

Ey CUEQE’
i

Finally, it follows from (12) that

RE((%) idy < 25
FCPRRRTON ij(y)yﬁzn,

for each j, concluding the proof of the lemma. ]
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3. Main Results

THEOREM 3.1. Let M f be the potential maximal operator on
R”H M., f is defined by

ngf(w,s):igg |Q| /|f(y|dy, where [{Q) > s.

Let w and v be weights on R™, w be a weight on R’}_“ and 1 be

a nonnegative measure on R”H ®, and ¥, are N-functions WIth
complements ¥, and Ty, respectwely Assume further that ®; o i
is convex. Then weak type boundedness, i.e.

a7t / (220 2 (Mau(z, 5)) dys(z, 5)] <ot [ fm 01 (Cl5w)u() Jolw) dy]

ThM, f(z,8)>AY

holds if and only if

[ [ o0

holds for each cube (3, where

Y0Q) = 21005" | [ B (ule0) dutws)|, @=@x (0.49)]

Proof. For the necessity, we follow the idea of [2]. Since 31_:_(—51 is

increasing in € and has full range R*, for given A > 0, we can choose
€ such that

Lw (uwfv(y))v(f) SEONan l%n Fea

1) = 5% (s ) 2o,

u(zv(z) /) «
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If (y,s) € Q, then y € Q and s < I(Q). So

_ gl
Mo fa,5) = sup Zr /If(y)l

e(1Q))
> 0 /Qlf(ylldy

_ellen e \oly) |
~ Q) QE‘I'l(u-(y)v<y))T”(y)d”

=2\ > A

Thus if {y,s) € @, then (y,5) € Ex = {(z,7) & R M f(z,7) >
)\}. Hence

(0 G) = &1 0 85 [ [ 2 (te. ) ant s)]

< &) 0 B3 [/;M¢f>A} @z(m(m‘, s)) dg(m,s)]

[ [0 (i) s
< [ v () v

Q|
P1QN

The third inequality follows from (2). Put
AQ) ell@y L
A= [ il dy.
W (wm v@ 1@ ) ulw)

as [ (2u<y§v(y)) ok

= Qf}:, “ ( (y)Ev(y)) v(;y) dy

= 4CA_'Q|

e(lQl)

Then
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Also

__AcMQl YA Q)
* G Je [(40Au(y)v(y)) Q] } v(y) dy.

Thus

YAQ) (i@ 5
wal [(ww)v@) o ]v(y)dygv(/\,mmo.

As £ — @, (3) holds.

For the sufficiency, we follow the idea of [4] and [11]. From Lemma
2.6, for each A > 0, let B = {(z,s) € RT*' : M_f(z,s) > A\}. Then,
if £\ is not empty, we have

E)\ C U Q? 1
3
where @; is the family of nonoverlapping maximal dyadic cubes satis-
fying
< 20950 / Fy
4nP IQJ’
for each integer j. Then - 5 < %’l— fQ f(y)dy and { Qg} i8 a cov-

ering of £). Hence it follow.s from (6) that

27()\,(5?)S/ 4nﬂ|§($)|Wfl§Tl)27(A’é§)d$

I

[ opgn o) T el
- /Q 2Rl Mula) g s P o)

7

< [ @l @lu@)el) do

@&

"ANQD (93D
+-/3 131 (C«\u(-’ﬂ)v(m) |Q;’| ) v{z) dx

< [ @0l @) )iz do +4(0, G
Q

J




622 Yong Mal Kim and Yeon Jae Yoo

So
@ < [ e Colf i) ds
and thus
j;";é (@2 (an(z, s))) du(z,s) < Dy o®T? UQJ qal(23“4"Opyf(m)|u(m))v(m) dm].

Summing over j gives

./;(I?)ge(]?ﬂz s)) du(z, s) < Zq>20«1> UQ: & (23“4"C’p|f(x)|u(:z))v(a;) m].

M f(z, s)> 2}

By using that &, o <I>1 is convex, this last sum is bounded by
$p0®7! [Z f @1(23"4“0;;\ f(q:)[u(;r:))v(m) d:r:}
A Qj
g

< B0, [c; [ w(amercis@ine ) ds:]

<(I:o(1>—1[ & Cp md}
<a007| [ & (Car@lue)vis)de 5
COROLLARY 3.2. From (3), put w = u = 1,8 = ®3. Then (3)
gives
13)
e(l@N]  [eleD [
[ Q) I ] [ClQl QE./J( (y)) dy} < Cg, foreach &> 0.
Proof. We follow the proof of Corollary 3.2 of [8]. O

COROLLARY 3.3. If &, 0®, " has the A’ condition and (3) holds for
w = u = 1, then there exist constants ', C" > 0 such that, for any

g >0,
\QDQD [‘CQ\'/ 1/1( e )dy] < .

(14 Bo2 (@)%
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Proof. We follow the proof of corollary 3.3 of [8]. O

ExAMPLE 3.4. Let ¢(|Q[) =1 and € = }. From Corollary 3.2, (13)
gives A7 of [4], i.e.

20 lia /. () tﬁfc(f) <o

But (13) is weaker than A}, because an N-function ® of A} in [4]
satisfies the As-condition.

Exampie 3.5. From Corollary 3.3, put du(z,t) = u(z)dr ® dé{t),
where & is the Dirac mass on [0,0c), concentrated at 0. Also set

G (x) = @E and ®5(z) = %q, where 1 < p < ¢ < oo. Then (14)
gives (u,v) € A{ip,p,q) of [12], L.e.

1—4

¢(|Q)Q|#%[%lfqu(m)dzf[t%/;u(m)‘ﬁ dm] F<A forall Q.
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