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REGULARITY OF NONLINEAR VECTOR
VALUED VARIATIONAL INEQUALITIES

Do WaN K

ABSTRACT. We consider regularity questions arising in the degen-
erate elliptic vector valued variational inequalities

—div{|Vu|f*Vu) = b(z, u, V)
with p € (1,00). It is a generalization of the scalar valued inequal-

ities, i.e., the obstacle problem. We obtain the Cﬁj’f regularity for
the solution © under a controllable growth condition of b(z,w, Vu).

1. Introduction

In this paper, we are concerned with regularity questions arising in
the degenerate elliptic vector valued variational inequalities

(1.1) —div(|Vulf V) > bz, u, Vu)

with p € (1, 00). Here we assume u is a vector valued function of dimen-
sion N and b : R x RN x M"™ — RY satisfies a controllable growth
condition

(1.2) |b(z,u, A)| < e(f(z) + [uf ™" + AP

for some ¢ and for all z € R*, u € R and A € M™ where f is defined
later. Assume O C R is a closed convex set with smooth boundary and
Q) C R" is a bounded domain. We also assume up € [W?(02)]" satisfies
the following compatibility condition

(1.3) w(§) € O.
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We define the admissible function class K such that
(1.4) K ={ve WP +up: 0(Q) C 0}

and u € W)Y + up is a solution to (1.1). To be more precise, u
satisfies

(1.5) /]Vu|p_2Vu (Vv — Vu)dz > /b(w,u,‘?u) (v —u)dz
) D
forallv € K.

The following theorem is our main theorem in this paper.

THEOREM 1. Suppose f € [L* ()Y with s > n, then u € CL%(Q).

loc

We recall that when p = 2 with a natural growth condition on b, i.e. ,
(1.6 |b{z, u, A)| < (14 [A]*)

for some ¢, Hildebrandt and Widman[8] proved that v € C%* under
some smallness condition on ||u||z~. Their smallness condition is optimal
for everywhere regularity. Indeed using a hole filling technique, they
showed that u satisfies a Morrey type growth condition. Their proof
depends on the growth condition of Green’s function and the linearity
of the principal part of inequality. Hence it seems not applicable to
{1.1). Independently Caffarelli[1] proved C* regularity for systems with
optimal growth condition on b. He showed a decay estimate for |u — A/
with appropriate h using a Harnack inequality.

For scalar valued degenerate inequalities, i.e., ohstacle problems, a
number of authors considered regularity questions (see Choe[2], Choe
and Lewis[3], Fuchs[5], Giaquinta[7], Lieberman[10] and Lindquist[11]).
Especially, one of the above authors proved v € Cllo‘g using a perturbation
technique.

It is worthwhile to note that the convexity condition for @ is neces-
sary for everywhere regularity as the following counterexample shows.
Suppose B; is a unit ball and v with |u| < 1 is a minimizer of the
functional

(1.7) | Vo] d
By
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with respect to {v € ug + [Wul’z(Bl)]N : % < v < 1}, where ug|sp, 18
topologically nontrivial. Then it is relatively easy to see that « has a
singular point at interior of B from a topological reason.

For the proof of Theorem 1, we observe a maximum principle which
itself is interesting. Once we have a maximum principle, we can con-
struct easily a comparison function v to u. Then a usual perturba.tlons
technique such as in Choe[2] can be used to show u € C‘lac Finally, C°
regularity follows in the same way as in Choe[2].

We write ¢ as a constant depending only on exterior data. We also
use the following notations

(1.8) Bgr{zp) = {z € R" : |z — x| < R},

wr ]
1.9 Wpie) = ——— | wdz,
( ) ( )BR( 0) |BR($U)| L

a{zo
é

(1.10) lsliumieo = | [ lo7do

Brlzo)

We drop out the generic point zy in various expressions and also the
second one of above notations may be briefly written by vg if there is
no confusion.

2. Regularity result

When p > n, C%* regularity is immediate from the Sobolev embed-
ding theorem. Hence we assume p & (1, n| for Holder continuity of u. It
is relatively well known that a sclution v of

(2.11) div(|VoP *Vuv) =0
is Holder continuous and satisfies a Campanato type growth condition.

LEMMA 1. Suppose v € [W'?(Bg)|" is a solution io (2.11), then v
satisfies the following integral inequalities

(2.12) /IVUP’dw gc(%)"/mmx

B, Br
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and

et
(2.13) /|'u —wfPdz < ¢ (%) p/ v — gl dz

B, Br
for all p € (0, R/2}. Consequently, v is Holder continuous.

In fact, one can prove Lemma 1 using a Cacciopoli type inequality
and a weak maximum principle for Vu. We refer its proof to Choe[2].

The following weak maximum principle is essential in constructing
comparison functions.

LEMMA 2. Suppose f : RY — R is a C? convex function. Suppose
v € WYP(Bg) is a solution to (2.11), then f(v) is a subsolution to

(2.14) div(|Vu[f2Vw) =0
and f(v) satisfies the following weak maximum principle
(2.15) meax f(v) < max f(v).

Proof. Let ¢ € Cg°(Bg) be a nonnegative cutoff function. Then we
have

(2.16)
/ww%wmywm=ﬁwwww%%w
Br Br

- [ V020, [(Fordlas — FrouwtD 6] di

By
—_'/.|Vvlp*2fmmvik’uﬁ¢dm.
Bp

Since f is a convex function, we conclude

(2.17) f VP2V (F(v)) - Vodz < 0

and f(v) is a subsolution to (2.14). The weak maximum principle follows
from a standard argument by taking

(218) 6 = max{ 1 (0) — max 1 (0),0}
as a test function in (2.17). O
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From Lemma 2, we have a useful corollary.
COROLLARY 1. Suppose that v € [w'?(Bg)]|" is a solution to
{ div(|Vu|P-2Vv) =0,
v =g on dBg

then we have
v(Bg) C the convex hull of g(8Bg).

Now using Corollary 1, we prove u is Holder continuous. Indeed we
show Vu satisfies a Morrey type growth condition using a perturbation
argument and Lemma 1. We recall that a similar argument has been
used in scalar obstacle problems by one of the authors Choe and Lewis[3].

THEOREM 2. Suppose Bp C §). Then Vu satisfles a Morrey type
growth condition such that

(2.19) f |VulPds < c [RE + (%)”] / |Vuff dz + cRM A1)
B, Br

for some € > 0 and for all p € (0, R/2). Consequently, if s > %, then we
have u € C2, by Morrey’s embedding theorem.

Proof. Since we are assuming 80 is smooth and O is convex, we can
always find a smooth convex function f : RY - R such that

{yeRV: fly) <1}=0
and
00 ={y € R" : f(y) =1}.
Suppose v € [Wy?(Bg)]" + u is the solution to
(2.20) div(|Vu[P 2 V) = 0
in Bgr. Then by the maximum principle in Lemma 2, we have

max f{v) < max f(v) = max f(u)

and since ©(8Bg) C O and O is convex, we have, from Corollary 1,

’U(BR) 0.
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Hence v is an admissible competing function to « in Bg. Moreover, from
Lemma 1, we have

o i
. r < i r _—
(2.21) /VU| dx < C(R) /[VU| dr forallpe (O, 2)
B, Bg

for some ¢. As usual, we also have

(2.22) f|‘?u|p dz < c/ |Vol? dx + c/ |Vu — Vuffdz
B, B, B,

LAY » I v}
SC(R) /|Vu[ dm+c/Vu Vol dz
Bg Ep

for some ¢, since we know the following fact :

/|Vv[p dr < /quPd:n.
BR BR

Now suppose p € [2,00). Since v is a solution to (2.20) and u is a
solution to the vector valued variational inequalities (1.1), we have
(2.23)

/ Vu — Volfdz < c/ﬂVuP_QVu — |Vo[P 2 9) - (Vu — Vv)de

By Bp

= c/ |VulP?Vu - (Vu — Vo) dz
B

< c/b(:c,u,Vu) -(u—nv)de
By

<e / (flz) + [VuP V) — o] do

Br
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for some ¢. We know already u and v are bounded. Using Holder’s
inequality and Poincaré’s inequality, we can estimate

(2.24)

o
B{f(w)lu—'v!dw < | [11 as /R|u—v|*’dx

Ji3
S} 1
P o
<R /|f|5-&1da: /|Vu_VU|Pda:
i

Jis

T
s/|Vu—VU|Pdm+c( g)RMli—3 /|f|5d$

Br

‘Again using Holder's inequality and Poincaré’s inequality, we obtain the
estimates

(2.25)

=1 1
)

./|Vu|pﬁ1}u—v|d:r: <cR /IVuF’dm f|Vu4Vv|Pd:r
It i

<e / |V — Vol dz + c(e)eRm / |Vulf dz.

Combining (2.23), (2.24) and (2.25), we have

. B
(2.26) / Vu— Vol dz < cRP f Vul? dz + cRM 0D £

for some ¢. Combining {2.22) and (2.26), we prove a Morrey type growth
condition {2.19) when p € [2,c0). Using a usual iteration lemma, we
prove

/ [ Vulf dz < cp™ P

for some § > 0 and consequently, u is Holder continuous.
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Now suppose p € (1, 2). If we use Holder inequality, we have

(2.27)

fIVu — Vol dzx
By

= f (|Vu] + [VUI)EQ%EI [(|Vu| + |V’”¢)|)E%;21 |V — V'u]p] dz

By
2-p 2
7

< L/ (|Vu| + |V'vl)pdr] L/ (IVu] + [Vo)' 5|V — Vo? da:]

jis

Using the property of monotoenicity of the operator, we estimate

(2.28) / (V] + [Vo )2 Vu — Vol da

Br

<e f VU2V — [VoP2V0) - (Va - Vo) da.
By

Following the same computation as in the previous case p € [2,00), we
have, from Hélder’s inequality and Poincaré’s inequality, the inequalities

(2.29) / ([VufP~"Vu — |Vo[2Vs) - (Vu — Vo) do
Br

< / (F(z) + [VuP lu — o] da

Br
1

< R |l ¢, /|Vu—Vv|Pda:

Jit

i L
P

+cR /|Vu|pd:1: /|Vu—Vv|pdm
i Jis
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Using the fact that

(2.30) / VolPds < / Vul? dz,
B Bp
we have
(2.31) f ([ Vuf2Vu — [VolP2V0) - (Vu — Vo) da
Bg

1

< cR|fll g /quF’dm -I-cR/[VuPda:.
” By

Combining (2.27) and (2.31}, we have
(2.32)

hLe
/ Y — Vo da < cRE | fil%, Lf |Vu|3’dm] RS f Vol da.
By R B

Using the assumption s > —n—', we have
r

(2.33)

3

REfI%, Lf |Vul”d‘””] <R f [Vul dz + c R* #0372 £1E

Bg

g

i3

for some small £ > 0. Therefore, combining (2.22), (2.32) and (2.33), we
prove that

(2.34)
1] i £
[rouris <o (® = ()7) [ 19updo t crest-sey

B, By

for some small £ > 0 and complete the proof. Iterating (2.34), we also
prove u is Holder continuous. O

The following remark is useful for the proof of C1® regularity.
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REMARK 1. From the iteration if s > n, we have
(2.35) / Vulf do < cp™
Bf"
for all £ > Q.

Now we recall that a solution v for p-Laplacian system satisfies a
Campanato type growth condition. Indeed Lieberman[10] proved the
lemma, for scalar cases and, DiBenedetto and Manfredi[4] proved for
systems. The proof depends on a careful iteration on supg, |Vv|.

LEMMA 3. Suppose that v € [W'P(Bg)]V is a solution to
div(| V[P ~2Vv) = 0,
then Vv satisfies a Campanato type growth condition
n-+a
(2.36) / Vv (Vo) < c (2) f Vo — (Vo) de
B, Bn

for some & > (.
We use a perturbation argument to prove Vu is Holder continuous.

THEOREM 3. Suppose By C 2. Then Vu satisfies a Campanato type
growth condition such that

n-+4 ,
(2.37) / Vu— (Vu)P do < (£) / Vet — (Vi) do + B
B, Hr

for some § > 0 and & > 0, and for all p € (0, R/2). Consequently, if
8> n, then Vu € ‘

Proof. From the proof of Theorem 2, we note that the solution v €
Wy P(Br)[Y +w to
div(|Volf 2Vo) =0

is an admissible competing function. Hence, from Lemma 3, we have

(2.38) / Vo — (Vo) P do < o / Vo — (Vo) de
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for some 6 > 0. As usual, we also have

(2.39)
/|Vu— (Vu),|Pdz < cf|V’u— (V) |?dx+c/|Vu—Vv|pda:
By B,
<e¢ (£ / IVu — (VuglPde+c | |Vu~— Vu|fPdr
R By
for some ¢.

Suppose p € [2,00). In this case, we note from (2.23)

(2.40) ./|Vu—Vv{pdec/f(:c)|u-v| d$+f|Vu|p_1|u—v|dm.

Again using Holder’s inequality, Poincaré’s inequality and (2.30), we
have

=1
&

-
=1 da:

(2.41) / F@u — | dz < cR||Fli / IV~ Vo
Br R

=R

< ol fll, R L Vu — Vol d

1
7
1

< R D)7 / Vuf? de

From Remark 1, we have

(2.42) /f(:c)|u —v|de < cR™5S

for some small € > 0. On the other hand, using Hdélder's inequality and
Poincare’s inequality, we have

243)  [Ivuru-olds <R [ Vupdo <R,
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where we used the fact that

(2.44) / Vol d < / VP .
By Bp

Combining {2.38) through (2.43), we complete the proof when p ¢
2, 00).
Now assume p € (1,2). As in the proof of Theorem 2, we have

/IVu - Vo|fdz
By

2 z
2 2

-

(245) <¢ f[Vujpdm /f(:c)|uﬁvl+|\7'u|p‘1|uﬁv| dz
LBk l1Br

<e| [vupas| | R by, [vupas

_BR Jis

B
2
+R / Vul? dz
By

Again, from Remark 1, we have

(2.46) ] |Vu — VolPde < cR™
By

for some ¢’ > 0 and complete the proof. We prove C'llof regularity from
a standard iteration on (2.37). a
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