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ON THE MAXIMAL OPERATORS GENERATED
BY QUASIRADIAL FOURIER MULTIPLIERS
AND ITS APPLICATIONS TO P.D.E.’S

YoNG-CHEOL KiM

ABsTRACT. Let ¢ € C*°(R™\ {0}) be a distance function which
is homogeneous with respect to a dilation group {tP }iso. For f €
& (R™), we consider the maximal operators generated by quasiradial
Fourier multiplier m o g which is defined by

Mupaof(z) = sup ‘3"—1 [mo (Q/t)ﬂ(-‘ﬂ)‘

where m is a function given on R, Suppose that the sphere L, =
{€ € B™| p(£€) = 1} satisfies a certain finite type condition and that
m vanishes at infinity and satisfies [;° s®lm(3+1)(s)|ds < C for
§>(n— 1)‘1/1}— 1/2|, 1 < p < oo. Then we prove that Mo, is
bounded on LP(R™) for 1 < p € oo; mareover, it is of weak type
(1,1).

1. Introduction

Let R” be the n-dimensional Euclidean space, denote the inner
product in B™ by {(z,&) = Y0, z:& for z,£ © R", and denote by
Ry = R"\ {0}. Let S(IR*) be the space of all infinitely differentiable
and rapidly decreasing functions on R™. For f € G{R"), we denote the
Fourier transform of f by

Flf(w) = flz) = f e 158 £(6) d.

=n
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Then the inverse Fourier transform of f is given by

O = O = e [ €95 de

Let P be a real nxn matrix whose eigenvalues «; satisfy Re(a,) > 0;
set a = minj«;<, Re(a;) and A = max; <;<,, Re(e;), and denote by v
the trace of P. Then we consider the dilation group {t},sp in R”
generated by the infinitesimal generator P, where ¢ = exp(Plogt) for
t > 0. We introduce quasi-homogeneous distance functions g associated
with the dilation group {t©};»¢; that is, p is a continuous function on
R™ with positive values satisfying o(t¥¢) = to(£) for all £ € R®. One
can refer to [2] and [10] for its fundamental properties. In what follows
we shall denote the adjoint of P by P* and we shall always assume
that o € C°°(RE).

If m(s) is defined on (0,00) we consider its extension to RY via
m o g(£), which is called a quasiradial function, and its corresponding
maximal operator defined by

Mmoo f () = sup Flmo(o/)f(z)|, feBR").

In order to state our result on the maximal operator associated with
quasiradial Fourier multipliers, we introduce the notion of fractional
derivatives and certain surface condition on dilations of the unit sphere

Bp={€ e R" o(£) = 1}.

For w > 0, 0 < v < 1, and a locally integrable function kA on
R vanishing identically on (—oc,0), one can define ( see Gasper and
Trebels [3] ) the fractional integrals by

L)) = ps

X(oou(s) [ (r =)t dr
(y) oo,
where X (_ow)(s) is the characteristic function on {—oco,w) and ['(v}
is the Gamma function, and define fractional derivatives of order § >
0,4 =[] + + with [§] being the largest integer less than or equal to 4,
by
R (s) = lim %[ ILYA)(s)], 0<y <1,

w——}oo
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and

h(‘”(s) — (a‘i)w h(T)(s)

S

whenever the right-hand sides exist; in fact, if v € N then A(Y) means
the classical derivative. In the following we assume that Z1~7(h) is lo-
cally absolutely continuous for each w > 0 as well as A7) and k(). Note
that a heuristic calculation gives F[h(®](c) = (~1)l% (—iz)h(0), o €
R.

Let ¥ be a smooth convex hypersurface of R™, n > 2, with which
every tangent line makes finite order of contact; that is, ¥ is called to be
of finite type. Let £(Z) be the set of points of £ at which the Gaussian
curvature « vanishes, and let N(2) = {n(£)|¢ € £(X)} where n{¢)
denotes the outer unit normal to ¥ at £ € ¥. For z € R™, denote by
B{&(z),r) the spherical cap near £(z) € Z cut off from ¥ by a plane
parallel to T;(,y(Z) ( the affine tangent plane to £ at £(z) ) at distance
r > 0 from it; that is,

B(é(l‘),’r‘) = {f € Eld(gsTE(x)(E)) < 7'}:

where £(z) is the point of ¥ whose outer unit normal is in the direction
z. For t > 0, let X% = {£ € R*| p(€) = t} and let By(&:(x),7) = {€ €
YE| (€, Te 2y (E)) < 7}, where & (x) is the point of XY whose outer
unit normal is in the direction z. We say that ¥ is of finite type &, if
k > 2 is the maximal order of contact on .

DEFINITION 1.1. Let X, be a smooth convex hypersurface of finite
type and {t7'};~0 be a dilation group as in the above. Then we say that
(Eg,tP ) is uniformly spherically integrable near £ = 1 if there exists
some € > 0 such that @, € L' (571} where

(1.1) Q(0) = sup o[ Be(£:(r8), 1/7)](1 + T)EE—I,
(rt)eRy x(1,14€]

do, is the surface measure on EZ, and the polar coordinates on K™ is
denoted by z = r# for r = |z| and 8 = z/|z| € S* .
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REMARK. We shall now give several examples that exemplify the
above definition.

(i) Let ¢¥ be a general dilation matrix as in the above and suppose
that 2, has nonvanishing Gaussian curvature. Then it is obvious that
(£, tF) is uniformly spherically integrable near ¢t = 1.

(ii) Let us consider a general dilation matrix ¢ as in the above,
&= E(EE,), and N, = N(Etg), and for € > 0set A = Up<sc1e N Let
¥, be a smooth convex hypersurface of finite type & > 2 and suppose
that there is an ¢y > 0 such that NV is a yn-dimensional submanifold
of R™ which is on S™~1, where m < [k(n — 1)]/[2(k — 1)]. Then we
see ( refer to [7] ) that (X,,tF) is uniformly spherically integrable near
t=1.

(iii) Let t© = diag (tl”’\l, 1/ 2a ,tlf’\") where each A, is even inte-
ger, and consider its associated quasi-homogeneous distance functions
defined by g(¢) = 3.7, |&[*. Then it is known in [8] that (3,,tF) is
also uniformly spherically integrable near ¢ = 1.

THEOREM 1.2. Let (X,,t7) be uniformly spherically integrable near
t = 1. Let m be a measurable function on R, vanishing at infinity and
satisfying

(1.2) |(mils1 = _/:o s° }m(‘sﬂ)(s)‘ ds < o0

for § > (n—Djl/p—1/2|, 1 < p < cc. Then My, is bounded on
LP(R™) for 1 < p < co; moreover, it is of weak type {1,1).

REMARK. It is well-known in Dappa and Trebels [2] that under less
smoothness condition on g, i.e., o € CI*2TU(RY), if m satisfies (1.2) for
§ > (n—1)(1/2—1/p) then Mp., is bounded on LP(R™) for 2 < p < oo.
Thus we concentrate on the proof of the above theorem on the range
l<p<i

Next we write out a routine result for almost everywhere convergence
of averages F~![m o (g/t) f] given by quasiradial Fourier multiplier
mo p, which is controlled by the weak type (1, 1)-estimate and LP{R™)-
estimate of ED"(Z,.
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COROLLARY 1.3. Suppose that (£,,tF) is uniformly spherically in-
tegrable near { = 1. Let m be a measurable function on R, vanishing
at infinity and satisfying (1.2) for'd > (n — 1)[]1/p—1/2[, 1 < p < o0.
If f € LP{R™) for 1 < p < oo, then we have that

Jim 7t mo (o/t) @)= ( fo T mO+1)(s) ds) fz) ae..

2. Proof of the main theorem

In this section, we prove LZ(R")-boundedness and weak type (1,1)-
estimate for the maximal operator My, generated by quasiradial
Fourier multiplier m ¢ ¢. An application of the complex interpolation
theorem for analytic family of operators along the lines of Stein and
Weiss [11] leads us to complete the proof of the main theorem. We
shall see that there is an interrelation between the maximal operator
Minop and quasiradial Bochner-Riesz means. For f € G(R"}, we con-
sider quasiradial Bochner-Riesz means ’Rg’t f of index 6 > 0 defined
by o

REF(©) = (1 e©)/1), F(€)

and the associated maximal operator
T f(a) = sup | R2,£(a).
£>0 .
Let x> 0 and & > 0. Then it follows from Gasper and Trebels [3] that
) 1 * 5 (541)
m(g) = ————— t—s5) “m t)dt,
()=t [, -9l I
for 0 < u < 4. For f € G(R™), by simple calculation we now have that

7 [meo (o/)f] (),

- L; iz, &} = _ § 6 (5+1) F

- (271.)11, I‘(é‘ + 1) /R" € A (1 9(5)/ts)+3 m (S) dsf(f)df
1 %0 .

<t E [ Sl



536 Yong-Cheol Kim

and so we have that

m

2) Munea () < HEIEE £(2).
Thus the proof of the main theorem relies heavily upon the mapping
properties of the maximal quasiradial Bochner-Riesz operator Sﬁg. In
order to obtain weak type (1, 1)-estimate for QR‘E,, we recall the lemma
[6] about asymptotics of quasiradial Bochner-Riesz kernel.

We now introduce polar coordinates with respect to a tf’-homoge-
neous distance function g € C°°(R"™), which is given by the following
diffeomorphism

Ry xZ, +Rf, (0,Q)—tF{=¢0>0,( €5,

It follows from this that the transformation rule of the Lebesgue mea-
sure Jd€ is given by

d€ = 0" (P¢,n(())deda((),

where do denotes the surface measure on ¥, and n{{) is the outer unit
normal vector to ¥, at (.

Fix some (o € ¥,. Then the unit sphere ¥, can be parametrized
near (o by a map w — Plw),w € R*! |w| < 1 such that P(0) =
Co. Then there is a neighborhood Uy of {y with compact closure, a
neighborhood Vy of the origin in R"~?, and an interval Iy = (1 —
€0, 1 + €g) so that the map

Q : ID X VO _>U01 (Q,'UJ) — Q(Q: ?.U') = QP;’p(w)
is a diffeomorphism with Q(1,0) = (g. The Jacobian of Q is given by
3o w) = & H{PP(w), n(Plw))) R(w),

where R{w) is positive and

e ([2][2])
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LemMaA 2.1, Let (p,Uqg, and P be as above. Then there isgg > 0, a
neighborhood i, of g whose closure is contained in Uy, a neighborhood
V1 of the origin in R"~1, and an interval I} = (1—¢),14€;) withe; < 1
such that @ maps Iy x V1 to Uy, and such that for all y € C2°(U1) and
forallte iy

[FH = o/0)3x)@) S On(L+ |2y Y for |{z/lz],n(éo))] <1~ ea

and
N-1
FTH - o/t)ix](2) = D pe(w,t) + O(lz| ") for [{@/|z],n{¢o)} 21 —e0
£=0
where

pelat) = [al 541 [ T I 0y (¢ 15/ fel) ()

2

and q¢ ¢ CX(P(W) x [, x §771) for £ =0,1,--+- , N — 1. In particu-
far, 40(¢,t, /1) = COX(EP O (PG (O (P £, 0] where
C(8) =T{6 + 1) e #r0+1/2, ‘

As you can observe in the above lemma, the decay estimate for the
Bochner-Riesz kernel is closely related with the Fourier transform of
the unit sphere ¥,. So it is very natural to ‘compare the relative sizes
of the spherical caps on dilations of X, with respect to a dilation group
{t¥ }1>0 which is introduced in section 1. We now recall the following
lemma [7] for this natural need.

LEMMA 2.2, . There is an ey > 0 such that

(i) Bel€e(t= " 2),7/2) C t¥ [Bu(ba(2),7)] C By(&(t " ), 20),

c(lii) o1 [B1(€1(2),m)]/2 < o3 [t¥ (Bu(€a(z),m))] < 201 [Biléalz).7)],
an

(iii) o¢ [Bi(Ee(2),7)}/2 < o1 [t T (By(€el@), 7))} < 200 [Be(€u(2), )]
for any t € [1 — €9, 1 + €g| and for any » € R}

We also see that the proof of the doubling property in [1] leads us
to obtain the stronger estimate for the surface measure do on ¥, as in
the following lemina.
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LEMMA 2.3. Let ¥, be a smooth convex hypersurface of finite
type. Then there is a constant C' > 0 so that o [B(£(z), Ar)] <
C A—1/25 [B(¢(x), )] for any = € RE, for any r > 0, and for A > 1.

We learned from (1.2) and (2.1) that the study of the maximal
operator My, generated by quasiradial Fourier multipliers mo g relies
heavily upon that of the maximal quasiradial Bochner-Riesz operator
E)th. So we prove weak type (1, 1)-estimate and LF{R™)-boundedness
of SDTE, for 1 < p < 2 in the following lemma.

LEMMA 2.4. Let ¥, be a smooth convex hypersurface of finite type
and {t¥}i~0 be a dilation group as in the above. If (X,,t7) is uniformly
spherically integrable near t = 1, then smf, is bounded on LP(R™) for
d > (n—1)(1/p—1/2), 1 < p < 2; moreover, it is of weak type (1,1)
for § > (n—1)/2.

Proof. Let K{z) = F7[(1 - )% ](z) and Ki(z) = F (1 — o/t)2.)(z)
for ¢ > 0. Then we have K¢(z) = t"K(¢" z). Choose € = &g > 0 with
€ € a satisfying (1.1) and such that for any ¢ € [1 — €, 1 + €]

P P"
(2.2) inf i >1/2 and sup [ 2] < 2.
aCRE ‘.’E} zCR2 |£L‘|

z|

Since K & L™ (R™) is compactly supported, in order to get weak type
(1, 1)-estimate for 90, it suffices by the results in [7] to show up that

/ sup |K:{z)|dz < o
R 1<t<1+e

and

J = sup > f sup  |Ky(z)| dz < oo.

VERY (hi(1ae)h r(p)>1y VT E)2AFR r(y) 1SIS14e

By Lemma 2.1 and Theorem A [1], we obtain that

K(e)] < e Bueate), 1/l
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So we have that for any t &€ [1 — e, 1+ ¢,
C o .

—_— 1 .
(1+ J$|)5+1 Ul[B](&](t CE), /It El)]
It also follows from (i) of Lemma 2.2 that

Bu{&1(t" 2), 1/t =)} C P [Bulgu(e), 2/ 1t™ " 2))-
By (2.2}, we get that for any £ € [1 — ¢, 1 4 ¢,

2 |z| 2
T pr . — S 2 - = * S 4;
- [tP" 2| Ao msélng; 5"z . [ 2]

ZER® |:I}‘ TERG |£L'|

(2.3) IKi(2)] <

where Ag = 2inf,epy ﬁli—lx' Combining this with Lemma 2.3,

o1 [Be(&(@), 2/1t”"al)] < 20457 o [Buléele), 1/}a)].
Thus by (i) and (iil) of Lemma 2.2, we have that
(2.4)
o1 [Bu(&a (™ 2), 1/1t7"2))] < o1 [t P (Be(tel), 2/t 2)))]
< 20¢[Bi(¢u(x), 2/1t7 )]
4047 au[Bilez), 1/Iz)]-
From (2.3) and (2.4}, we get that for all t € [1 — ¢, 1 + €],

Ke(e)] < G o Bu(eo), 1 /o))

Since (2,,t") is uniformly spherically integrable near ¢ = 1, using
2. (#) defined in (1,1) we have that

sup  |K¢(z)|
1<t<1+e
S [By(€u(), 1/)2)](L + [2])
L sup o x),1/|z x|)E
(1+[2)5 %5 alnemoxpiird
O

Qc(a/|2]),

T (Lt farr



540 Yong-Cheol Kim

If § > (n —1)/2, then since O, € L(S™ ') we have that

sup K ()]

1<i<lte

L1(R™)

1

e pn-lge
=0 . _r ar
Clllznes 1)/0 (1+ )0

< oa.

Finally if § > (n — 1)/2, then we have that

1

J <L C sup f _—
Z l=|=((1+ep* rw))*—* (1+ \J:D‘H_t“

YERY (hI(1+e)h ry)>1}

rn— 1 dr
_0”95”};1(3“ 1) sup Z f

a—ec —I
vERD {h|(14e)h 'r‘('y)>1} ({14e)h r(y)) (1 + T)6+

Qe(z/|x|) d

< C sup Z A < DO.
VERE [ty ayr ry)>1y ((L+ € ?‘(y))(u_EJ( R

Thus we conclude that 92 is of weak type (1,1) for § > (n — 1)/2.

Finally we utilize the standard linearization technique of the maxi-
mal operator in order to employ the Marcinkiewicz interpolation theo-
rem. It now suffices to consider the analytic family of linear operators
given by z — RZ .\ f (x) where z — t(z) is an arbitrary measurable
function on R™ with values in R.,. Combining this with the abave
weak type (1, 1)-estimate for ?JJTQ we get LP(IR™)- boubdedness of imé
near p — 1. By the complex interpolation method, we interpolate thls
estimate with L?{R™)-boundedness for EDI‘:? on & > 0. Therefore we
complete the proof. ]

3. Applications to P.D.E.’s

In this section, we discuss about applications of Theorem 1.2 to
several partial differential equations.
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{a) It is well-known that the solution I/ of the Schridinger initial
value problem

d
AU = z'ETtU,t >0, U(z,0) = f(z), f € BR")
is given by U(z,t) = (2m)™ [,. et=8lettlel” f(£Yde, and can be ex-
tended to all of LP(R™) only if p = 2 ( see [5] ). Sjéstrand [9] studied
LP(R"™)-boundedness of the a-th Riesz means of U(z,t) defined by

a+1

Ri(x) = prws] fu (t — 8)°U(z, s} ds.

Then we have that

— 1 . t
RI(€) = (:atl /n ea(m,s)/o (t — sY*U(z, s)dsdz

a+l ‘ o3 il
:W/o(t_S) (‘[Rne(’g)i’z{(x,s)dm)ds
t ~

= (30:_11 /0 (t— s)"’e""”lgI ds) f(é.

So the associated Fourier multiplier is

m, (t)€]%) = atl /t(t — 5)%e™lé gs
0

tcv,+1
a+1 tlélz I @ 15
_ tC‘T./o- (t[e]® — )€™ ds.
Now we consider the generalized Schrodinger operator defined by
1 . .
- Hx,£) grte(€) d
Secllim) = g [ €506 fg)ag

for t > 0 and x € R", where (Z,,t") is uniformly spherically integrable
near ¢ = 1, and a-th Riesz means of S, ,[f](z) defined by

Riu(@) = St [ (¢ = 9°Suilfl(e)do.
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Similarly to the above, the associated Fourier multiplier is

to(£) .
mg(te(£)) = s, /0 {to(€) — 5)%e*® ds.

Note that mq(t) = &kt fﬂt(t — §)%eisds = (a+1) f01(1 — )€t ds.
We see that the major contribution of the asymptotic decay for the

function m&aﬂ)(t) comes from some small intervals near ¢ = 0 and

t = 1. Using a function ¢ € C*°(IR) such that ¢(s) =1 for s > 3/4 and

p(s) = 0 for s < 1/2, we split the function mgi-"l)(t} as follows;

1
mH(t) = C/ (1 —s)2s0tle™t ds
0
= v (t) + wal(t),
where v,(t) = C fol(l — s}l h(s} and we(t) = C fol (1—s5)=
s81 et (1 - ¢(s)) ds. It then follows from an usual asymptotic formula
in A. Erdélyi ( Asymptotic Expansion, Dover, 1956 ) that ve(t) ~
1/(1 + )*t and w,(t) ~ 1/{1 4 £)°*2. So we have that for a > 6 >

1 o
fn s |m£f+”(s)| ds gc[J Sl = 4 (14 5) @] ds < oo

Thus by Theorem 1.2 we conclude that if o > (n — 1)|1/p —1/2|, then
Mo, 0p 18 bounded on LP(R") for 1 < p < oc; moreover, it is of weak
type (1,1) for « > (n —1)/2.

(b) We now consider the heat initial value problem

d
(5-8)u=0t>0 U0 = [(@f € SE),
Then it is well-known that the solution Z is given by

_ 1 iw,g) —tlEl® §
Ufe,t) = e /R et 8" f(&) de.

Suppose that (EQ,tP ) is uniformly spherically integrable near ¢ = 1.
Then we define the generalized heat operator by

(;_)n / i 8 e—tel®) () de

Hoslfllz) =
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for t > 0 and x € R®. We eagsily see that the associated Fourier multi-
plier is m(tg{(£)) where m(s) = e~*. Since m(s) trivially satisfies (1.2)
for all & > 0, by Theorem 1.2 we conclude that the associated maximal
operator Mo, is bounded on LP(R™) for 1 < p < oo; moreover, it is
of weak type (1,1).

(c) Suppose that {E,,t")} is uniformly spherically integrable near
t = 1. Since m(s) = (1 — e™*)/s obviously satisfies (1.2) for all § > 0,
by Theorem 1.2 we have that

sup |F~H[(te) M1~ ) F] ()]

< C|fllemny, 1 <p < oo
+>0

Lr(R»)

and

{= € 0 sup 774 (1) (1~ ) F](@)] > XY < Sl gaeys A>0,

which may be useful to prove almost everywhere convergence theorems
of Voronovskaya type for the generalized Weierstrass means (see [4]).

(d) Suppose that (£,,¢F) is uniformly spherically integrable near ¢ =
1 and let ms(s) = (1 —s)%. Then we get that mg)\)(s) =C{1- s)f_)‘)
for A < d+1. By Theorem 1.2, we have that DJI‘; is bounded on L? (R™)
for 6 > (n—1}/1/p—1/2|, 1 < p < oo, and also it is of weak type (1,1}
for & > (n — 1)/2. This result coincides with that of Lemma 2.4.
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