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COMPUTATION OF NUMERICAL INVARIANTS
col(-), row(-) FOR A RING kfe, o+, gleDe]

Kisux LEE

ABSTRACT. We find the values of numerical invariants col(R) and
row{R) for R = k[te, 1", te~1*-1], where k is a field and e > 4. We
also show that col(R) = crs{R) and row(R) = drs(R), but they are
strietly less than the reduction number of R plus 1.

I. Introduction

Throughout this paper, we assume that (A, m) is a Noetherian local
ring, and all modules are unitary.

Recently, it was proved in [3| that there are certain restrictions on
the entries of the maps in the minimal free resolutions of finitely gener-
ated modules of infinite projective dimension over Noetherian local rings.
From these restrictions, some previously known results in commutative
ring theory are slightly improved; for examples, Herzog’s extension of
Kunz’s result to a characterization of modules of finite projective and
injective dimensions in characteristic p > 0 ([3, Corollary 2.8]), and
Eisenbud's and Dutta’s results on the existence of free summands in

syzygy modules ([3, Proposition 2.2]).
Also, using these restrictions, some new numerical invariants of local
rings were introduced in [3]. They are col(A) and row(A) associated
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with the columns and rows, respectively, of the maps in infinite minimal
resolutions. This paper deals with these invariants. In [4], two more
invariants were defined, say crs(A) and drs(A), which are associated
with the cyclic modules determined by regular sequences and their Matlis
duals, respectively. More precisely, we have the following definitions.

DEFINITION 1.1. In defining row{A) and drs(A) below, we assume
that A is Cohen-Macaulay. We denote by ¢,(M) the i-th map in a
minimal resolution of a finitely generated A-module M. We also use the
usual notation Soc(M) = Homs(A/m, M) to denote the socle of M.

i) col{A) = inf {t > 1: for each finitely generated A-module M of
infinite projective dimension, each column of ¢,(M) contains an
element outside m®, for all ¢ > 1 + depth 4 }.

row(A) = inf {¢ > 1: for each finitely generated A-module M
of infinite projective dimension, each row of ¢,(M) contains an
element outside m’, for all ¢ > depth A4 }.

ii) ers(A) = inf {t > 1. Soc(A/(x)) ¢ m'(A/(x)) for some maximal

regular sequence X = y,--- , T}
drs(A) = inf {t > 1 : Soc((A/(x))") ¢ m*{({A/(x)}")} for some
system of parameters x = x1,--- , 24}

When A is regular local, we interpret the above definition as col(4) =
row(A) = 1. These invariants are related by the following inequalities.

PRrROPOSITION 1.2, ([4, Proposition 1.3]) Let (A, m) be a Noetherian
local ring. Then
i) 1 < enl(A) < ers(A) < oo.

ii) If A is Cohen-Macaulay, then 1 < row(A) < drs(4) < co.
iii) A is a regular local ring if and only if any, equivalently all, of the

invariants in 1) and ii) is 1.

ProposITION 1.3. ([4, Proposition 4.1]) Let (A, m) be a Gorenstein

local ring. Then
i} col(A) = row(A)},
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ii) ers(4) = drs(A).

In [4], the following was conjectured.

CONJECTURE 1.4. If A/m is infinite, then two invariants in i) and ii)
above agree, that is, col(A) = ers(A), and if A is Cohen-Macaulay then
row{A) = drs(A).

In a few cases, the conjecture is in the affirmative. For instances, if
a non-regular Cohen-Macaulay local ring A has a minimal multiplicity,
ie., multd = 1 + edimA — dim4, then these invariants are all equal to
2 (see Corollary 3.7 in [4]), and if A is hypersurface, these invariants are
the same as the multiplicity of A (see Theorem 4.3 in [4]}). It was also
shown in [4] that if dimA = 0, then the conjecture holds. Nevertheless,
the conjecture is still open even in the case of dimA = 1. In this article,
we take a particular ring R = k[t¢, %71, ¢l¢7U"1] for ¢ > 4, which is
often used as an example ring in many papers (e.g. see [6], or [7]). It
is known that R is a Cohen-Macaulay local ring of dimensicn 1, but its
associated graded ring is not Cohen-Macaulay.

Like other invariants, it is almost impossible to find the exact values
of the invariants defined above for arbitrary local rings. In the next
section, we compute the values of col{R) and row(R), and also show
that the conjecture holds for the ring K.

2. Invariants col(R) and row(R)

Throughout this section we set R = k[[t¢, £27!, #{e~1e=1] where k is a
field and e > 4, and m its maximal ideal. Since R is a one-dimensional
domain, R is Cohen-Macaulay. It is known that R is not Gorenstein.
(See Remark 2.7.(2)) We find the generators of each power of m in the

next lemuma, whose proof is quite elementary. We first note that m =
(te. o+l t(efl)efl)'
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LEMMA 2.1. For every positive integer £ > (e — 2)e, each t* belongs
to m. Moreover, if r > 2,

mr _ (tre.‘ tm'H, . tre+r).

Proof. Since t* and #°*' € m, we know {% ¢?¢H 22 € m. In-
ductively, we can check that #** € m for any positive integer § and
0 < k < 7. The first part follows since (e -1)e ~1 = {e—2)Je+e—2+1,
{e—2e+e—2+1+1=(e—1)e, and t= Vel cm.

For ihe second part, we use induction on r. For r = 2, 1t suffices to
show that

t(eﬁl)eflte’ t{e—l)eglte+1, (t(e——l)e—l)Q e {th, t26+1, t2€+2).

Since
t{eﬁl)eflte — t{e—s)(6+1)t26+2
t(e—l)e—lte+l — t{ehZ)etje‘
(t(efl)efl)B — t2{e—2)e—2t2:a:

and gle=Nletl) yle-2e ée-2e—2 ¢ m by the first part, the case of r = 2 is
complete.

Suppose m? = (7%, t7¢F1 ... 3¢H0) for j with 2 < j < r. We now show
that
m = (tre tre+1 . tre+r)
1 1 H -
Tt ig clear that (tre: treJrl: e ’t'ra+r) C m’ since tre+k — t[r—k)etk(s-l-l) cm

for 0 € k < . To show the other inclusion, it is sufficient, by induction
hypothesis, to show that for 0 <7 <r —1,

t(e—l)e—lt(r—l)e+f? = (tre, tre-{-l’ L. ,tre+r)l
If i = 0, then
t(e—l]e—ltir—l)c — t(eﬁB)(eJrl)t'reJrZ - (tre tT‘Hl . tre—t—r).
Ifl1<i¢i<r-—1, then
t[eﬁl)eflt(rgljeﬂ — t(e—E)etre—l+z e (tre tre—H L tre-l-r)l

This completes the proof. a
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REMARK 2.2. In fact, it is easily obtained that for » > 2
m = (tre et oL, tre+mm{r,a—1}).

Indeed, if e < k < r, then since k = kie + ko for some k,,0 < ko < e, we
have

gretk o prethiethe (tE)kltTC+k2 < (tm,tm"_l, . :tre+mm{r,e-1}).

Thus for r > 2, the minimal number of generators of m”, p{m7), is
min{r,e — 1} + 1.

We say that a system of parameter x = &, - ,z4 of a local ring
(A, m) is a minimal reduction of the maximal ideal m if (x)m" = m™*!
for some positive integer r. It is known in [5] that such a minimal
reduction always exists, provided that a residue field A/m is infinite.
The reduction number of A, denoted by red(A}), is the smallest integer
r for which there is a minimal reduction x with (x}m™ = m™!,

The following lemma is a well known fact, but we include a proof for
completeness. '

LeMMA 2.3. Let (A, m) be a Noetherian local ring. Suppose (x)m” =
m™*! for some positive integer r and a system of parameterx = x4, - - , 4
of A, Thenx, e m—m? foreachi=1,-- ,d.

Proof. 1f all z, are in m?, then m™! = {x)m" C m™?, which im-

plies m = 0 by Nakayama lemma. Suppose z,---,3, € m — m? and
Tiy1, -, %4 € m?. Now, let N := (zq1,--+,2z,)m"™"! be a submodule
of M := (x1,--- ,z4)m"™1, Then it is easy to show that mM + N =
M since z,,1,--- , 24 € m® and mM = m’"*! by assumption. There-
fore, by Nakayama lemma, we have M = N, ie., (z),- - ,z;m"™! =
(z1,++ ,x,)m™"1, which implies j = d since z,--- , x4 is a system of
parameter of A. Hence all z, are in m — m?. a

In [1], a generalized Loewy length of a Noetherian local ring (A, m) is
defined as

££.(A) = min{f : m* C (z), -+, z4) for some system of parameter
Ty, -+, Tg of A}
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By definitions, it is clear that £.£4.(A) < red(A)+ 1. If A is Cohen-
Macaulay, then one of our invariants, drs(A), is the same as £.£.{A) (see
[4]). Thus we have the following inequalities

() row(A) < drs{A) = £.£.(A) < red(A) + 1.

In the following proposition, we show that red(#) = e — 1 and
¢£(R) < e—1 (in fact, the equality holds (see Theorem 2.6 below)).
Thus the last inequality in () could be strict.

PROPOSITION 2.4. (1) (t#*)m*! = m® and (z)m*? # m*~! for any
z € m. In particular, red(R) = e — 1.
(2) m*~! C (t°). In particular, £.4.(R) <e¢— 1.

Proof. (1) By Lemma 2.1 and Remark 2.2, it is easy to check the first
part. For the second part, it suffices to show that {z)m*=? # m®~! only
for z € m—m? by the above lemma. Let z = at®+ b+ f ctle-Ve~1 Then
at least one of a, b, and ¢ must be a unit. If a is a unit, then #&~Dete! g
not in {z)m®? but in m*" since me=2 = (Fle=e ... plemere=y el —
(t(e—l)e1 D ’t(e—l}e—le—l)’ teple—lle-1 t(e—l)s+e—1’ and ple—le-1 ¢ me—2,
Similarly, if b or ¢ is a unit, then $* ¢ ¢ m* ! — (z)m*?. Hence
(z)m®? #£ me! for any z € m, and so we have red{R) = ¢ — 1 by
the definition of red(R).

(2) We note that me=! = (gle=De gle-Del . gle-lletle=1)) by Lemma
2.1 Sincefor0<j<e—1

ple—Lleti _ gle—(i+1etiety — yreti (te)e—(ﬂl) € (t°)

and

gleDetel — yetle—Teml  gle=lle—lye o (ye)

we have m*~! C (#).
In particular, £.£.(R) < e — 1 by the definition of £.£.(R). O

REMARK 2.5. It is known that if A is a Cohen-Macaulay local ring
of dimension 1, then red(4) is independent, i.e., red(A) takes the same
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value for any minimal reduction of A (see [2]). Thus for Proposition 2.4
(1), it suffices to show that (t*)m*! =m®, and (£)m® 2 # me L.

Now we prove that the conjecture in the introduction holds for B. We
recall the definition of the invariant row(A) of a Cohen-Macaulay local
ring A row(A) is the least number of ¢ > 1 such that for each finitely
generated A-module M of infinite projective dimension, each row of i-th

map in a minimal resolution of M contains an element outside mf, for
all 7 > depth A.

THEOREM 2.6. Let B = kfte, t=+!,t*"Ve1], where k is a field and
e > 4. Then
(1) col(R) = 2 = ers(R),
(2) row(R) =e — 1 =drs(R).

In particular, Conjecture 1.4 holds for R.

Proof. (1) Since col(R) < crs(R) and R is not regular, it is enough
to show that crs(R) < 2. We will show that tle-Ue—1 & Soc(R/(t°)) —
m?(R/ (%)), which will force crs{(R} < 2 by definition of crs(R). Since
m= (te: te-&—l, t(e—l]e—])1

ple-lle—Lgetl _ (te)e e (te) and ple—Lle—lyle=lle—1 _ (t2e+1)e—2te = (tE),

we know that tle-De-1 € Soc(R/(#%)). It is easy to check that tie-ie-1
¢ m?(R/(t%)). Indeed if t(==De-1 € m?(R/(t%)), then tle~V==1 + zt° €
m? for some z € R, which contradicts that { #®-Ye-1 ¢¢ } is a part of
minimal generators of m. Thus we have 1 < col(R) < ers(R) < 2, which
implies that

col(R} = 2 = crs(R).

(2) Since
row(R) < drs(R) = £.4(R) < e—1 by Proposition 2.4,

it suffices to show that row(R) > e — 1. Let us consider the minimal
resolution (Fy, @,) of R/ (e, —¢le-2ete=2)

RN > NI L NI - LN » B » /(t(e—z)e1 _t(e—2)e+e—2) Y
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) t(e72)e
We note that 62 gle2ere? € me=2, Since ) = { _ple-2jeve-2 ], we

know (tlePete2 ¢le=2ey ¢ Kergpy. If (t(ﬁ‘z)ﬁ‘ﬁ—z, te=2¢) i a part of
minimal generators of Ker ¢;, then row{R} > e — 1 by the definition of
row(R) since (¢°~3° tle-2ete=2) ig ane of the rows in the map ¢y, and
gle=2e fleete? = me2 Thus we claim that (¢ 22 t-2€) ig a
part of minimal generators of Ker p;. We need to show that (¢e-%ete=2)
t(e‘z)e) & mKer ;. Suppose on the contrary that (t(c—ﬂ)e-!~e~‘2’ gledle} =
> r(#:,v:), where r, € m and {(z,,1)} is a set of minimal generators
of Kery. Since o(a,4) = 0, Le, ztle2e — gplo-Dere? o (g, =
t2y, for each i in k[t]. Thus we may assume that (tle2ere=2 gle-2e)
= (£ (th, %), where t*, %, and t* € m, and k, — £, = e — 2 for
each ¢. Then, for some ¢

(*)  pothy,=(e—2et+e—2 and  p,+4, =(e—2e

To simplify notation, let p = p,,, k = k,,, and £ = £,. Since th, £ € m,
we may assume that & = ke + k2 and £ = fie + & by Lemma 2.1
and Remark 2.2 for some positive integers k; > ko, £ > £o. (We have
these inequalities from (x). The case k; < k; happens only for ¢{=~De-L,
See Remark 2.7 below ). Note that £; < k) < e — 2 since p > 0 and
k—f=e—2 If k) =¥{, then we must have by = ¢y =e—-2, ky —e—2,
and £, = 0 to satisfy the conditions k; > ko, 1 > €y and kg — o = e — 2,
This implies that p = 0 by (x), i.e., ## € m, which is a contradiction.
Thus we may assume that by Lemma 2.1,

(**) gg S El < kl S e — 2, and k‘g S k:l.
If kl = k’g, then k—£€ = kle‘f' kg — (£16+£2) = (kl —51)6+k1 —EQ >e—2
by (**), which contradicts the fact that k — £ =€ — 2.

Suppose k, > ky. Since p+k = (e —2)e + e — 2, we have

p = {e—2)ete—2—k
(e—2e+e—2— {kie+ks)
= (e—2—kiJet+e—2— k.
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Since k1 > ks,

(e—2-klete—2—k < p=(e—-2-hlete—2—k
< {e—2~k+1e.
This implies that # ¢ m by Lemma 2.1 {e.g. 2¢ +3 € m), which is a

contradiction. Hence (¢e=2+e=2 e72)) ig a part of minimal generators
of Ker i1, and row(R) > e — 1. O

REMARK 2.7. (1) In case of resolving R/ (e, -¢le-teHel) for
gle=he gle=lerle=1) ¢ me=1 (gle=lletle1) 4le=1)e) ig not a part of minimal
generators of Ker; since (t(e*1)8+(e‘l), t(e_l)e) = t¢ (t(efl)e*l, t(e_z)e),
where (o171 tle=2e) € Ker ;. We note that ple—lle—l — gle=Detle-2)+1
and ki =e—22% (e—2)+1=ks.

(2) If A is a Gorenstein local ring, it is known that col(A4) = row(4),

and crs(4) = drs(A) (see Proposition 1.3). Thus by Theorem 2.6, B =
kfte, 1o, te~De-1] is not Gorenstein.
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