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AN INEQUALITY ON PERMANENTS
OF HADAMARD PRODUCTS

LERoOY B. BEASLEY

ABSTRACT. Let A = (a;;) and B = (b;;) be n x n complex matrices
and let A o B denote the Hadamard product of A and B, that is Ao
B = (ai jb; ;). We conjecture a permanental analog of Oppenheim’s
inequality and verify it for n = 2 and 3 as well as for some infinite
classes of matrices.

1. Introduction

Let A = (a;;) and B = (b;;) be n x n complex matrices and let Ao B
denote the Hadamard product of A and B, that is Ao B = (a;;b;;).
Some authors call this the Schur product. Oppenheim’s inequality states
that det(A o B) > det Adet B, when A and B are positive semidefinite
matrices. In 1982, Chollet([2]) conjectured a permanental analog:

(1) per(Ao B) < perA perB.

He showed that inequality (1) holds for all positive definite matrices
A and B if and only if for any positive semidefinite matrix A4,

per(A o A) < ( perA)?

where A denotes the complex conjugate of A. Gregorac and Hensel([3])
proved that inequality (1) holds for » = 2 and 3.
In 1986, Bapat and Sunder([1]) conjectured a stronger result:

n
(2) per(A o B) < perA H b; ;.
i=1
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An n X n matrix is called a correlation matrix if it is positive definite
and all its main diagonal entries are 1. In 1989, Zhang([4]) showed that
inequality (2) is true for all positive definite matrices if and only if it is
true for all correlation matrices, that is if and only if

per (Ao B) < per A

for all correlation matrices A and B, and verified inequality (2) is true
when n = 2. He also proved for any n that for any n x n correlation
matrix and the real matrix

1 ¢ see een
t 1 eer ee.

B, = tt 1 .- t 0<t<1
t t 1

we have that
per (Ao B;) < per A.
We now conjecture the following, which is stronger than Chollet’s con-
jecture, inequality (1), and weaker than Bapat and Sunder’s conjecture,
inequality (2).

CONJECTURE 1.1. If A = (a;;) and B = (b;;) are positive semidefi-
nite Hermitian n x n matrices then

(3) per (A o B) < max {per A Hbi,i, per B H ai‘,} .

i=1 i=1
We shall show that this conjecture is true for n = 2 and 3, as well as
showing that it is true if and only if it holds for all correlation matrices.

2. Preliminaries

As previous researchers have done, when trying to establish inequal-
ities (1) and (2), we shall show that only correlation matrices need be
considered. In fact, we shall show that one only needs to consider the
permanent of one correlation matrix and its conjugate.

LEMMA 2.1. Inequality (3) holds for all positive semidefinite Hermit-
ian n x n matrices if and only if it holds for all n x n correlation matrices.
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Proof. Since the sufficiency is obvious, we only show the necessity.
We assume that if A and B are any n X n correlation matrices we have
that

(4) per (Ao B) < max {per A, per B}.

Let B and S be n x n positive definite Hermitian matrices and let
D = (RolI)t and D' = (S o I)? where I is the n x n identity ma-
trix. That is, D and D' are diagonal matrices whose diagonal entries
are the positive square roots of the corresponding diagonal entries of
R and S respectively. If A and B are matrices such that D"'RD™! =
A and D'"'SD'™' = B then A and B are correlation matrices with

aij = m and b;; = (—;Sil(tm—){ Since for any matrix X and di-
agonal matrix E we have per XE = per EX = per X per E, it follows
that per (Ro S) = per [(DAD) o (D'SD')] = per [DD'(Ao B)DD'] =
(per D)?*(per D’')?per (Ao B). Since A and B are correlation matrices we
have that

per (RoS) < (per D)*(per D')? max {per A, per B}
= max {per R(per D')?, per S(per D)?}
= max{per R[], si;, per S, rii}
since per R = (per D)?per A and per S = (per D’')?per B.
The lemma now follows by the fact that the set of positive semidefinite

Hermitian matrices is the closure of the set of positive definite Hermitian
matrices. O

LEMMA 2.2. Inequality (3) holds for all positive semidefinite Hermit-
ian n X n matrices if and only if for all n X n correlation matrices A,

(5) per (Ao A) < per A

Proof. The sufficiency is obvious since A is positive semidefinite when-
ever A is.

Suppose A and B are correlation matrices. Then

n n
Z Hai,a(i)bi,a(i) < z H | Qi (1) H bi,a(i) b

g€S, i=1 g€Sy =1

per (AoB) = |per (Ao B)| <
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By the Cauchy-Schwartz inequality we now have

n % n %
per (Ao B) < (Z 1T/ aoe l2) (Z 11 b |2) -
o€S, i=1 o€S, i=1
That is per (A o B) < [per (4 o A)]2[per(B o B)]:. By hypothesis we
have per (A o B) < (perA)i(perB)t < max{per A, per B}. The last
inequality follows from the fact that 1 < min{per A, per B}.
The lemma now follows from Lemma 2.1. O

3. The Main Theorems

Now we prove that for n = 2 or 3, Conjecture 1.1 is true. The case
n = 2 follows from [4]. For n = 3 we need only show that inequality (5)
holds for all correlation matrices.

THEOREM 3.1. If A is a 3 x 3 correlation matrix, then
per (Ao A) < per A.

Proof. Let

y
z

1

then per A = 1+2Re(z§z)+|z|*+|y|>+|2]? and per (4o A) = 1+2|zyz|*+
|z|*+ |y|*+|2|*. Thus per A—per (Ao A) = 2Re(zFz)+ |z|?+ |[y[2+|2|* —
2lzyz|? — |z|* — |y|* — |2|*. We now show that per A — per (A o 4) > 0.
Since A is a correlation matrix, and hence positive semidefinite, so is
(Ao A), and we have that 1 > |z|, ||, |2].

Case 1. Re(zgz) > 0.

If 2Re(zgz) > |z|? + |y|? + |2}%, then 2Re(zyz) > 2|xyz|? since |z|* >
|zyz|* and |y|? > |zyz|?. Also, since |z|? + |y|? + |2[? > [z|* + [y|* + |2|*,
we have per A — per (Ao A) = (2Re(z§z) — 2|zyz|?) + (|z|? + |y[* + |2|*) —
(lzf* + Jyl* + ]21*) > 0.

If 2Re(zyz) < |z|? + |y|® + |2[%, then since A is positive semidefinite,
det A > 0 so that 1 > |z|2+|y|? +|2|2 — 2Re(x7z) > 0. Hence |z|®+ |y|* +
|2I° — 2Re(zgz) > [|z]* +|y|”+ |2{> — 2Re(z72)] so that |o? + |y|* +{2|? -
[|z|* + ly|* + |2|%] + 2Re(xgz) > 4[Re(zy2))? + 2|zy|? + 2lyz|* + 2|z2|> -

A=
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4Re(zyz){|z|?+|y|2 +]|2]*) +4Re(zgz). But 2|zy|? > 2|zyz|? so [z[2+|y|*+
1212 = [|lz|* + ly|* + |2|*] + 2Re(z§z) — 2|zyz|* > 4Re(zF2)[1 + Re(zgz) —
(I + |y + [21%)] + 2(Jyz|* + |z2]?). Since |z2|* > |zyz* > [Re(zgz)]?,
and |yz|® > |zyz|? > [Re(z§2))?,we have 2(|xz|? + |yz|?) > 4[Re(z72)]>.
Hence, per A — per (Ao 4) = [z’ + |y? + [2* — [le[* + ly|* + [2[] +
2Re(z7z) — 2lzyz|* > 4Re(zgz)[1 + 2Re(zgz) — (|z* + |yl + |2°)] =
4Re(zyz)det A > 0. ‘

Case 2. Re(zyz) <0.

Since det A > 0, we have 1 > 1 + 2Re(z§z) > |z|® + [y|* + [2[%.

If jo < 3, [yl < §, and [2] < 3, then [z + [y|* +[2* < §(1=* + |y +
|2|?). We now apply tge geometric-arithmetic mean inequality to obtain
joyal? < (EEHE) = L (2P +y P+ < &(loP-+HyPP+2?)?, since

2 2 2
1> Joft 4+ |2, snd henee, |aya| < (EELBEAEE)! < (a4 yit+
|z|?). But then —Re(zyz) = |[Re(z§z)| < |zyz| < 712—7(|$|2 + {y|? + [21%).
Hence, 2Re(z§2) — 2|zyz|? — (|z|* + |yt +|2]*) > — (722-.; +&+ ;11-) (|z|2+
ly|2+|2]%). It follows that per A—per (AocA) > (1 v 2 - i) (|lz|2+
lyl? +12f?) > 0.

Thus we may assume that one of |z|, |y|, or || is greater than { and
without loss of generality we assume that |y| > 3. Since |z|>*+|y|?+ (2| <
1, we have |z]” + |y +|2]” = (Jo]* +]yl* +12*) > (J=* +|y[* +|2|*)* ~ (|=|*+
lyl* + |21*) = 2(|zy|* + lyz|* + |22|?). But 2|zz? > 2|zyz|? and |zy’2|* =
|:1:2 211,22 zy[2+|y2|? 2 2 2 2\ Q; 1

v ly?2?| < ( 5 ) , so that 2|zy*z| < (|zy|*+|yz|*). Since |y| > 3,
we have |zyz| < 2|zy?z| < (|zy|*+]y2|?). Here, ~Re(zyz) = |Re(zyz)| <
|zyz| < (|zy[* + |yz|?), and hence, |z* + [y|* + |2[* = (|=|* + [y[* + [2[*) >
—~Re(z§z)+2|zyz|?. Hence per A—per (Ao A) = 2Re(zgz)+|z|> +|y|2+
|2|* — 2|lzyz]? — |z|* — Jy}* — |2)* > 0. O

We now show that for some infinite classes of matrices, inequality (2),
and hence inequality (3), holds.

THEOREM 3.2. Let A be ann X n positive semidefinite real symmetric
matrix of order n such that a;; > 0 for all 4,j = 1,--- ,n. If B is any
positive semidefinite Hermitian matrix then per (AoB) < per AT’ bi;.
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Proof Suppose A and B are positive definite Hermitian matrices and
i > 0for all ¢, j < n. Since B is a positive definite Hermitian matrix,
we have that b;; > 0 for all . Let D = (Bo I)! that is, D is the
diagonal matrix whose diagonal entries are the positive square roots of

the diagonal entries of B. Let R = D"1BD™!, so that r;; = ——;-'1—;"'
8 ST m) i)
Then, R is a correlation matrix and |r; ;| < 1. Now,

per (Ao B) per (Ao DRD)

per (D(Ae R)D)

per szer (Ao R)

per D? |per (Ao R)|

per Dz ZaeSn m—l Qi,o(i)Ti, 0(1)l
per D* 3 s, [lia | @it [I 7ioto |
per 1)2 Zae S, H;:l laz,a(z)

per D ZJES H‘i:l ai'a(i)

per D? [per A|

per D?per A

per ATT:, b

Since the set of positive semidefinite Hermitian matrices is the closure of
the set of positive definite Hermitian matrices, the lemma follows. O

T
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COROLLARY 3.2.1. If A is ann X n entrywise nonnegative correlation
matrix then per (A o A) < per A.

COROLLARY 3.2.2. If A is a totally positive n x n semidefinite matrix
and B isanyn xn positive semidefinite Hermitian matrix then per (Ao
B) <per AT, b;

Proof. Since a totally positive matrix has all its minors positive, each
entry is positive. O

COROLLARY 3.2.3. If A is an n x n tridiagonal positive semidefinite
Hermitian matrix and B is any n x n positive semidefinite Hermitian
matrix then per (Ao B) < per A[], bi;.

Proof. Since every tridiagonal semidefinite Hermitian matrix is diag-
onally congruent to a real entrywise nonnegative correlation matrix, the
corollary follows from Theorem 3.2. O
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