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BLOCK INCOMPLETE FACTORIZATION
PRECONDITIONERS FOR A SYMMETRIC H-MATRIX

JAE HEON YUN, SANG WooOK KM, AND EuN HEUI KIM

ABSTRACT. We propose new parallelizable block incomplete factor-
ization preconditioners for a symmetric block-tridiagonal H-matrix.
Theoretical properties of these block preconditioners are compared
with those of block incomplete factorization preconditioners for the
corresponding comparison matrix. Numerical results of the precondi-
tioned CG(PCG) method using these block preconditioners are com-
pared with those of PCG method using a standard incomplete factor-
ization preconditioner to see the effectiveness of the block incomplete
factorization preconditioners.

1. Introduction

The discretization of partial differential equations in 2D or 3D, by fi-
nite difference or finite element approximation, leads often to large sparse
block-tridiagonal linear systems. In this paper, we consider the linear
system of equations

(1) Az =b, z,becR”

where A € R™*” is a large sparse symmetric block-tridiagonal H-matrix
blocked in the form

B C, O e 0
ct B, C 0
(2) A= | ¢+ 0 . . :
0o .- C;-g_z Bpo1i Cm-1
o -- 0 CT, Bn
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It is assumed that the diagonal blocks B; of A are symmetric matrices
with the same order. Since A is a large sparse matrix, direct solvers
become prohibitively expensive because of the large amount of work and
storage required. As an alternative, the conjugate gradient (CG) it-
erative method (3| is widely used for a symmetric M-matrix A which
guarantees the positive-definiteness of A. Given an initial guess zy, CG
algorithm compute iteratively new approximations z; to the true solu-
tion z* = A~!b. The iterate x; is accepted as a solution if the residual
T, = b — Az satisfies ||r¢||/||b]] < (Tolerance). In general, the conver-
gence is not guaranteed or may be extremely slow. Hence, the original
problem (1) must be transformed into a more tractable form. To do so,
we consider an easily invertible matrix K called the preconditioning ma-
trix or preconditioner and apply the iterative solvers either to the left
preconditioned linear system KAz = K~b or to the right precondi-
tioned linear system AK ~ly = b, where y = Kz. The preconditioner K
should be chosen so that K—A4 or AK~! is a good approximation to the
identity matrix.

The purpose of this paper is to propose new parallelizable block in-
complete factorization preconditioners for a symmetric block-tridiagonal
H-matrix which extend the ideas for an M-matrix introduced by Yun [7].
The block incomplete factorization preconditioners for H-matrices to be
proposed in this paper are obtained by performing the standard incom-
plete factorization on each matrix block independently, so that they have
no block recurrence which requires sparse approximate inverses for pivot
blocks and thus they can be computed in parallel based on matrix blocks.

In section 2, we review some basic properties of the incomplete fac-
torization for H-matrices. In section 3, we propose new parallelizable
block incomplete factorization preconditioners for a symmetric block-
tridiagonal H-matrix, and their theoretical properties are compared with -
those of block incomplete factorization preconditioners for its compari-
son matrix. In section 4, we describe how to construct the effective
block preconditioners for a special type of matrix which arises from five-
point discretization of the second-order partial differential equation. In
section 5, we present numerical results of the PCG with the block in-
complete factorization preconditioners developed in this paper, and their
results are compared with those of the PCG with a standard incomplete
factorization preconditioner. Lastly, some conclusions are drawn.
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2. H-matrices and incomplete factorization

A vector z is nonnegative (positive), denoted z > 0 (z > 0), if all
its entries are nonnegative (positive). Similarly, a matrix B is said to
be nonnegative, denoted B > 0, if all its entries are nonnegative. We
compare two matrices A > B, when A — B > 0, and two vectors z > y
(z > y) when z —y > 0 (z—y > 0). Given a matrix A = (a;;), we define
the matrix |A| = (Jai;|). It follows that |A] > 0 and that |AB| < |A||B|
for any two matrices A and B of compatible size. For any two matrices
A and B of the same size, the Hadamard matriz product A® B is defined
by ai;bi;j, where a;; and b;; are the entries of A and B respectively. A
matrix A = (a;;) is an M-matriz if a;; < 0 for all i # j and A7! > 0.
The comparison matriz (A) = (ay;) of a matrix A = (a;;) is defined by

_ ) eyl ifi=j

Qg5 = p o .

—lai| if i #j.
A matrix A is an H-matrix if (A) is an M-matrix. H-matrices have
been studied by many authors in connection to iterative solutions of
linear systems; see Beauwens [1], Frommer and Mayer [2]. Notice that
M-matrices and strictly or irreducibly diagonally dominant matrices are
contained in the class of all H-matrices. Actually, an H-matrix A = (a;;)
may be equivalently characterized by being generalized strictly diagonally

dominant, i.e.,

|a,~,~|ui> Zla,ﬂuj, i=1,2,...,n
J#i

for some vector u = (uy,Usg,...,u,)T > 0. The spectral radius p(A)
of a matrix A is p(4) = max{|\|: A € o(A)}, where o(A) denotes the
spectrum of A, that is, the set of eigenvalues of A. It was shown in [6]
that for n x n real matrices A and B, |A] < B implies p(A) < p(B). A
representation A = K —N is called a splitting of A when K is nonsingular.
A splitting A = K — N is a convergent splitting of A if p( K™'N) < 1.
It is well-known that if A = K — N is a convergent splitting, then any
stationary iterative method of the form

Kizg1 =Nz +b, k>0

converges to the exact solution of Az = b for every choice of zo [6].
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LEMMA 2.1. Let A be an H-matrix, let B be a matrix of order n, and
let C=A@B. If0<b; <1lfori#jandb; >1fori=12,...,n,
then C is also an H-matrix.

Proof. Since A is an H-matrix, there exists a positive vector z such
that (A)z > 0. Thus, for alli=1,2,...,n

(C)2)s = lawbislzi — Y lasibisle; > |aal: — Y |ay|z; > 0.
i T
Hence, C is an H-matrix. O

LEMMA 2.2. Let A = [A;j] be a symmetric H-matrix that is parti-
tioned into block matrix form. Then

(a) The block diagonal part of A is a symmetric H-matrix. In partic-
ular, each block A;; is a symmetric H-matrix.
(b) The block lower and upper triangular parts of A are H-matrices.

Proof. To prove part (a), let B = [B;;] be partitioned consistently
with the partitioning of A and let the entries B;; be unity and the entries
Bij, i # j, be zero. If we compute A ® B, then

A ® B = block diagonal part of A.

Thus, from Lemma 2.1, the block diagonal part of A is a symmetric H-
matrix. In addition, we can easily show that each block A;; is a symmetric
H-matrix. Part (b) is proved similarly. O

A general algorithm for building incomplete LU factorization can be
derived by performing Gaussian elimination and dropping some of ele-
ments in predetermined off-diagonal positions. Let P, denote the set of
all pairs of indices of off-diagonal matrix entries, that is,

P,={(G,j)|i#Jj, 1<i<n, 1<j<n}

Then, it was shown in [4] that incomplete LU factorizations of M-matrices
exist for any zero pattern set P C P,. The following theorem which is
a little variant of Theorem 2.5 in [5] states the existence of incomplete
factorizations of symmetric H-matrices.

THEOREM 2.3. Let A be a symmetric H-matrix. Then, for every
symmetric zero pattern set P C P, (i.e., (i,j) € P implies (4,i) € P),
there exist an upper triangular matrix U = (u;;), a diagonal matrix D
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whose i-th diagonal element is u;', and a symmetric matrix R = (i),
with u;; = 0 if (4,j7) € P and ry; = 0 if (i,5) ¢ P, such that A =
UTDU ~ R. Moreover, U is an H-matrix.

In Theorem 2.3, A = UTDU — R is called an incomplete factorization
of A corresponding to a zero pattern set P.

THEOREM 2.4 ([5]). Let A be ann x n H-matrix. Let A= LU — N
and (A) = LU — N be the incomplete LU factorizations of A and (A)
corresponding to a zero pattern set P C P, respectively. Then each of
the following holds:

(@) U < (U).

(b) |[L7H < L

(c) U < U-1.

@) N[ < N.

() I(LU)™'N| < (L)' N.

For symmetric H-matrices, the following theorem similar to Theo-
rem 2.4 can be easily obtained using Theorems 2.3 and 2.4.

THEOREM 2.5. Let A be a symmetric H-matrix. Let A= UTDU — R
and (A) = UTDU — R be the incomplete factorizations of A and (A)
corresponding to a symmetric zero pattern set P C P, respectively. Then
each of the following holds:

(2) U < (U).

(b) U <O

(c) (UTD)™!| < (UTD)™?
) |R < R.

(e) [D| < D.

LEMMA 2.6. Let A be a symmetric H-matrix. Let A= UTDU — R
and (A) = UTDU — R be the incomplete factorizations of A and (A)
corresponding to a symmetric zero pattern set P C P, respectively. Then
each of the following holds:

(a) |DU| < |DU|, |I-DU|<I-DU.
(b) [UTD| < |UTD|, |I-UTD|<I-UTD.

Proof. For the proof of part (a), let U = (“v) and U = (ﬁ,J) Then,
from Theorem 2.5(a) 0 < @ < |uy| and @;; < —|ug;| < 0ford # j. Thus,
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fori <y
1 1 U _

= Juisli— < luggl=— < —figj— = —=
l Ul[”ii‘ l ”luii Y U Ui

Wiy

uij

i Ui

It follows that |DU| < |DU|. Since DU is a unit upper triangular matrix
and DU is a unit upper triangular M-matrix, | — DU| = |DU| ~ I and
I — DU = |DU| - I. Using these properties,

\[ - DU|=|DU|-1<|DU|-1=1-DU.

Hence, part (a) is proved. Notice that B < C implies BT < C7 for any
two matrices B and C of compatible size. Thus, part (b) follows from
part (a) by taking transposes. O

3. Block incomplete factorizations

We first consider block incomplete factorization preconditioners for a
symmetric block-tridiagonal H-matrix of the simplest form

3) A= (B : Cl) .
cf B,

It is assumed that the diagonal blocks B; of A are £ x £ square matrices.
Since A is a symmetric H-matrix, it follows from Lemma 2.2 that B, and
B, are symmetric H-matrices. From the incomplete factorization pro-
cess, we can find an upper triangular matrix U;, a symmetric matrix R;,
and a diagonal matrix D; such that B; = UT D;U; — R; is the incomplete
factorization of B; for each i = 1,2, see Theorem 2.3. f A=K —-Nisa
splitting of A and K is a matrix which is easily invertible, then K can be

used as a preconditioner for nonstationary iterative methods. The effec-

tiveness of the preconditioner K depends on how well K approximates
A.

THEOREM 3.1. Let A be a symmetric H-matrix of the form (3). For
each i = 1,2, let B; = UFD,;U; — R; and (B;) = UFD,;U; — R; be the
incomplete factorizations of B; and (B;) corresponding to a symmetric
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zero pattern set P C P, respectively. Let

U= Up 0 U, = U, Gy , Us = U, (UfD)'Ch 7
0 Uz 0 U2 0 U2

= (B 0), g.= (B TGN = (O -EERITIGH)
0 U, 0 U 0 U,

and
-(8) (0 2)
0 D2 0 D2
If we let
M = UTDU, M, = UL DU,, Mg = U] DUy,
R=M — A, Ry = M, — A, Rs= Mg — A,
M =UTDU, M, = U DU,, Mg = UZ DUs,

R =M - (A), R, = M, — (A), Rg = Ms — (A),

then each of the following holds:

(@) WY <UL U <O 051 <050,

(b) |((UTD)!| < (UTD)~Y, |(UITD)™*| < (UID)™, |((UFD)~!| < (UFD)™,

(c) |R| <R, |Ra| < Ra, |Rﬂ‘ < Rg,

(d) p(M~1R) < p(M~'R), p(M7'Ra) < p(M;'Rs), p(M;'Rg) < p(M'Rp),

() p(Mz Rp) < p(M7'Ra) < p(M~'R) < 1.

Proof. For the proof of parts (a) and (b), we will show only that
Uzt < Us' and |(UF D)7 < (UF D)~ since other properties can be
proved similarly. By simple calculations, one obtains

ww—CW”“ﬂﬂW“WQWﬁ
B8 - '

0 U3
F=1 = ot Ufl(ﬁff{l)_lwﬂfjil
o 0 U;! ’

N (T D) 0
“%m"Q4WmWWWWWMﬁKWmWJ’
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o 7T 1),)-1
UsD)' = ors —~1(U1T{.r)1”)—1 AT DA () ; 1]
(U7 Do) |CLITUTH(UT D)™ (U7 Do)~
From Theorem 2.5(b) and (c),~|U[1| < U;! and I(U,TI?,)'ﬂ < (UTD;)!
for i = 1,2. Hence, [U;'| < Uz' and |(UFD)™Y| < (UFD)™* hold. For

the proof of part (c), we will show only that |R,| < R,. If we compute
|R,| and R,, then

IR = | Ry | (UFD, — NG|
|CT(D\Uy = I)| |CTD\Cy+ Ry )’
B o R, (I -UTDy)la|
* T \ICTII - DiTh) |CT\DyChl + Re

From Lemma 2.6, |I — U] Dy| < I — UTD, and |I — D,Uy| < I — D, Th,.
From Theorem 2.5(d) and (e), |R;| < R; for i = 1,2 and |D,| < D;.
Thus, |R,| < R, holds. For the proof of part (d), we will show only that
p(M3'Rg) < p(MEIRg). Using parts (a), (b) and (c),

M3 Rg| < |U5*||(UF D) || Ro| < U5 (U5 D)™ Ry = M5 Rs.

Hence, |M51Rﬂ| < Mﬁ_léﬂ implies p(MElRB) < p(MEIRﬁ). Since (A)
and (B;) are M-matrices, part (e) was proved in [7]. O

The following Examples 3.2 and 3.3 show that Theorem 3.1(e) does
not hold for a symmetric H-matrix A. In other words, it is not true that

p(M;z'Rs) < p(M;'Ra) < p(M™'R).

ExAMPLE 3.2. Consider a symmetric 2 x 2 block matrix A of the form

3 1 10

A=<B1 Cl)z 1 3 -1 1
cT B, 1 -1 =3 1}’

0 1 13

where Bj, B, and C; are 2 x 2 square matrices. Since (A) is an M-
matrix, A is an H-matrix. Let By = UTD,U; and By = U D;U, be
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factorizations of B; and Bs, respectively. Then one obtains

U, = U G D= D, 0 U= U, (UTDy)™'Cy .
0 U2 0 D2 0 U2

Since Ma = UZDUQ, Mg = UgDUﬁ, Ra = Ma - A, and Rﬂ = Mg - A,
by simple calculations

0 1/20 7/80 —19/320 0 0 27/160 —11/128
- 3/80  9/320 0 0 -5/32  9/12
MoiR < |0 TV 380 90| / /128 |
0 -1/10 -3/10 3/20 0 0 —7/20 3/16
0 1/30 -1/15 3/40 0 0 -1/20 1/16

If we compute p(M;'R,) and p(Mj 'Rs) using the MATLAB software,
p(M;'R,) = 0.2418, p(M5'Rg) = 0.3259.
Hence, p(Mz'Ra) < p(Mj'Rs).

ExAMPLE 3.3. Consider a symmetric 2 x 2 block matrix A of the form

4 2 20
Az(Bl Cl>= 2 -4 01
CcT B, 2 0 -3 1}’
0 1 13

where B;, B, and C; are 2 x 2 square matrices. Since (A) is an M-
matrix, A is an H-matrix. Let B; = UFD,U; and B; = UT D,U, be
factorizations of B; and B, respectively. Then one obtains

U=U10, D=D10, Ua=U101.
0 U 0 D, 0 U,

Since M = UTDU, M, = UIDU,, R=M — A, and R, = M, — A, by
simple calculations

0 0 -2/5 —1/10 0 7/50 28/125 2/125

MR = 0 0 -1/5 15| o _ |0 1/50 -21/125 ~3/250
3/5 —1/10 0 ol 7 " jo -3/10 -7/25 -—1/50|

-1/5 =3/10 0 0 0 1/10 4/25  -3/50
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If we compute p(M~'R) and p(M;'R,) using the MATLAB software,
p(M™'R) = 0.3761, p(M7'R,) = 0.3864.
Hence, p(M~'R) < p(M;'R,).

Next, we consider block incomplete factorization preconditioners for
a symmetric block-tridiagonal H-matrix of the general form (2). Gener-
alization of Theorem 3.1 to an H-matrix of the form (2) is not difficult,
so that the following theorem is described without proof. For simplicity
of exposition, let (Q);; denote the (z,j)-block component of the block
matrix Q.

THEOREM 3.4. Let A be a symmetric block-tridiagonal H-matrix of
the form (2). For each i = 1,2,...,m, let B; = UTD,U; — R; and
(B;) = U’,T D,U; — R; be the incomplete factorizations of B; and (B;),
respectively. Let

D = blockdiag(D1, Da, ..., D), U = blockdiag(Us, Us, .. ., Un),

U, ifi=j
Us = [(Ua)ij], (Ua)ij=4Ci ifj=i+landl1<i<m-—1
0 otherwise,
U; ifi=j
Us = [(Ug)ijl, (Ug)ij =4 (UFD;))"C; ifj=i+land1<i<m-—1
0 otherwise,
and
D = blockdiag(Dy, Ds,...,Dy), U = blockdiag(Th,Ds,...,Un),
T, ifi=j
Us = [(Ua)ijl, Ua)ij=3—ICi] ifj=i+landl<i<m—1
0 otherwise,
i ifi=j
'Ug = [(Ug)ij], (Ug)ij = ~(Ufbi)_1|0i| ifj=i+land1<i<m-—1
0 otherwise.
If we let
M =UTDU, M, =UIDU,, Mjp = U DUy,
R=M - A, R,.=M,— A, Rg=Mg— A,
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M =UTDU, M, =UIDU,, Mg = UL DUs,,
R=M-(4), R.=M,—(4),  Ry=Ms—(A),

then each of the following holds:

(a) U <O, U <07, Uz <050,

(b) (UTD)~Y < (UTD)™?, |(UID)Y| < (UTD)!, |(UFD) ! < (UFD)?,
(c) |RI<R, |Ral < Ra, |Rs|l <Ry,

(d) p(M~*R) < p(M~'R), p(M7'Ra) < p(M7'Ra), p(Mz'Rg) < p(M;'Rp),
(e) p(M3Rg) < p(M'R) < p(M7'R) < 1.

Since U;’s can be computed independently of one another, three types
of the block incomplete factorization preconditioners M, M,, and Mg
presented in Theorem 3.4 can be computed in parallel. This inherent
parallelism is a big advantage of three types of the block incomplete fac-
torization preconditioners. The PCG method is used to test the effective-
ness of the block preconditioners in Theorem 3.4, so the PCG algorithm
with a preconditioner K is described below. Here, A and K are assumed
to be a symmetric (positive or negative) definite matrix.

ArLcoriTHM: PCG (PRECONDITIONED CG)
Choose zy and compute ro = b — Az
Solve Kwg = 1y and set pg = wp
Fori=0,1,2,...

o; = (ri,wi)/ (i, Api)

Tiy1 = Ti + 044

Tigl = Ti — QAD;

If ||riv1]l2/]|bll2 < (Tolerance), stop

Solve Kw; 1 = riy1

Bi = (Tit1, wis1)/ (i, wi)

Pit1 = Wiy1 + Gips
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4. Construction of Block incomplete factorization precondi-
tioners

The construction of three types of the block incomplete factorization
preconditioners presented in Theorem 3.4 will be considered in this sec-
tion for a special type of H-matrix A whose structure is of the form (2)
with B;’s tridiagonal matrices and C;’s diagonal matrices. This type
of matrix A arises from five-point discretization of the following elliptic
second-order PDE (partial differential equation)

4)  (a(z,9)uz(z,y))z + (b(2, ¥)uy(2,9))y — ez, Y)u(z, y) = f(=,y)

with a(z,y) > 0, b(z,y) > 0, c(z,y) > 0, and (z,y) € Q, where Q
is a square region, and with suitable boundary conditions on 82 which
denotes the boundary of .

For simplicity, the block incomplete factorization preconditioners de-
scribed in Theorem 3.4 were constructed based on the incomplete factor-
izations of 1 x 1 block submatrices B;. These ideas can be generalized to
the block incomplete factorization preconditioners based on the incom-
plete factorizations of k¥ x k block submatrices, which are from now on
called k-block incomplete factorization preconditioners.

We just describe how to construct 2-block incomplete factorization
preconditioners for 4 x 4 block-tridiagonal matrix A of the form (2) since
these ideas can be easily extended to the construction of general k-block
incomplete factorization preconditioners for m x m block-tridiagonal ma-
trix of the form (2). Let ¢ denote the order of submatrices B; and C;.

First, A is partitioned into
(B G
CT B,

where B; = (g% Bz) B; = (53% gi), and C; = (& §). Since A is
assumed to be a symmetric H-matrix, from Lemma 2.2 B;’s are also
symmetric H-matrices. It follows from Theorem 2.3 that the incomplete
factorization of B; exists. For each i = 1,2, let B; = UL Dylhi; — Ri; be
the incomplete factorization of B;, where 0 < j<i-1, and the NnoNZzero
structures of U;;’s for £ = 7 are illustrated in Fig. 1.
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Ors, . s, e, o’ . o 3,
5| Bty e 5| i R | 5| G i | os| i
Yoy, ° Yoy, 3 T3, o Teg, o1
10 %, | 10 8, | 10 8, ° 10 %, ¢
.: .: .: ::
% 5 10 % 5 10 % 5 10 % 5 10
Uip U; Uiz Uis
Fig. 1. Nonzero structures of U;;’s
If welet foreach0<j<¢-1
pio(Pv O) e (% 0,
0 ng 0 L{g,-
U, C Uy; ULDy)C
@i = %), = (M WPDTG),
0 Uy 0 Uy
then M? = (U)TD}U}, (Ma)} = ((Ua)})"D}(Ua)?, and (Mp)? = ((Us)2)T

D3(Up)3 are 2-block incomplete factorization preconditioners of types M,
M,, and Mp respectively, where the superscript 2 is used to represent 2-
block preconditioners. From Fig. 1, the nonzero structures of Llf , (Lla)f-,
and (Ug)? for £ =7 are illustrated in Fig. 2 to 4.

B
10 ’:‘&"-;,11" 10 "&‘x“"""l‘l". 10 '5&2%% 10 %ﬁ&“l
20 - 20 1’&“ 20 "‘a,‘ 20 %

0 10 20 (4] 10 20 0 0 20 0 10 20

ug U Uz U

Fig. 2. Nonzero structures of U2’s

From Fig. 4, it can be seen that (Mg)? has much more fill-ins than
other block preconditioners even if j is small. In the similar way as was
done for 2-block preconditioners, k-block preconditioners MJ’-‘, (M,,);‘,
and (Mp)% can be easily constructed. Notice that (Ma); = (M,)§ and
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O om g O
o | e | e |
10 .&;::’-:. 10 ""%_g:"-.& 10 ', .,_:. 10 "‘5,’ 11‘5’
20 T ) 20 ) 20 "*:’ﬁ!;i 20 %
oy "y i oy
0 10 20 0o 10 20

Ua)} Ua) (Ua)? (Ua)3

Fig. 3. Nonzero structures of (Ua)?’s

0 O3 0 0
| e T =
10f 10 ) 10f 10
g, -, g
20 | 20 BB n Bl 20 %‘i
T Ty e "
0 10 20 0 10 20 0 10 20 0 10 20
(Us)3 Up)i (Us)3 (Us)3

Fig. 4. Nonzero structures of (Us)?’s

(Mp)} = (Mp)gforall j = 0,1,...,£—1since By’s are tridiagonal matrices
and thus the complete factorizations of B;’s have no fill-in elements.

5. Numerical results

In this section, we provide numerical results of the PCG method us-
ing the k-block incomplete factorization preconditioners proposed in this
paper for solving Ar = b with the special type of matrix A described in
section 4. For each type of block preconditioner, numerical experiments
are carried out for 0 < j < 2 and various values of k. To evaluate the
effectiveness of the k-block incomplete factorization preconditioners, we
also provide numerical results of the PCG method using the standard
incomplete factorization preconditioner which is called IC(0) precond:-
tioner. In all cases, the PCG was started with zo = 0 and it was stopped
when ||r;|l2/|1bll2 < 1078, where || - ||; refers to Ly-norm. All numerical
experiments have been carried out on the Cray C90 supercomputer using
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64-bit arithmetic. In Tables 1 and 2, ITER refers to the number of it-
erations satisfying the stopping criterion mentioned above, P-time refers
to the CPU time to compute block preconditioners, and I-time refers to
the CPU time for the PCG with these preconditioners. All CPU times
are measured in seconds.

The k-block preconditioner M]" requires less storage than other types
of block preconditioners (see Fig. 2 to 4), but its convergence rate is much
worse than the standard IC(0) preconditioner and hence CPU time of
the PCG using Mf is larger than that of the PCG using the IC(0).
Here, the convergence rate is measured by the number ITER. The k-
block preconditioner (Mg)? requires more storage than other types (see
Fig. 2 to 4) and its convergence rate is better than other types, but CPU
time of the PCG using this preconditioner is larger than that of the PCG
using the IC(0) because of more computational costs per iteration for
(Mpg)%. For this reason, numerical results for M} and (Mp)5 are not
provided. Only the discretized matrix A is of importance, so the right-
hand side vector b is created artificially. Therefore, the right-hand side
function f(z,y) in equation (4) is not relevant.

EXAMPLE 5.1. We consider equation (4) over the square region Q =
(0,1) x (0,1) with a(z,y) = b(z,y) = cosz, c(z,y) = 0, and the Dirichlet
boundary condition u(z,y) = 0 on 5. That is, the following PDE
problem is considered:

V.(coszVu)=f inQ
u=0 on Of.

We have used two uniform meshes of Az = Ay = I,i,—g and Az = Ay =
-241—1, which leads to two matrices of order n = 128 x 128 and » = 240 x
240, where Az and Ay refer to the mesh sizes in the z-direction and y-
direction, respectively. Once the matrix A is constructed from five-point
discretization of the PDE, the right-hand side vector b is chosen so that
the exact solution is the discretization of 10zy(l — z)(1 — y) exp(z*3).

Numerical results for this problem are listed in Table 1.

EXAMPLE 5.2. We consider equation (4) over the square region ) =
(0,1) x (0,1) with a(z,y) = b(z,y), c(z,y) = 0, and the boundary con-
ditionsu =0fory=0,u, =0forz =0and z =1, uy = 0 for y = 1,
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where

We have used two uniform meshes of Axr = Ay = l—;g and Az = Ay =
which leads to two matrices of order n = 129x 128 and n = 241 x 240.
Once the matrix A is constructed from five-point discretization of the
PDE, the right-hand side vector b is chosen so that the exact solution is
the discretization of 10z%y(1 — z)?(1 — y)2exp(z*®). Numerical results

L
240"
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a(x, y) =

1000
1

if0l<z,y<09
otherwise.

for this problem are listed in Table 2.

TABLE 1. Numerical results of the PCG using (Ma);? for Example 5.1

n =128 x 128
i=0 i=1 ji=2

k | ITER | P-time | I-time | ITER | P-time | I-time | ITER | P-time | I-time
1 143 | 0.051 7.41

2 138 | 0.070 7.14 120 [ 0.098 6.71 117{ 0.124 6.86

4 1351 0.079 6.99 104 | 0.130 5.97 96 | 0.189 5.97

8 133 | 0.083 6.87 94 | 0.147 547 83| 0.220 5.29

16 132 [ 0.086 6.82 88| 0.154 5.19 751 0238 4.85

32 132 | 0.087 6.82 86 | 0.159 5.08 72| 0.245 4.70
I1C(0) 130 [ 0.088 6.70

n = 240 x 240
i=0 i=1 j=2

k | ITER | P-time | I-time | ITER | P-time | I-time | ITER | P-time | I-time
1 266 | 0.180 | 48.46

2 257 | 0.247 | 46.96 2121 0345 ¢ 40.73 205 | 0.445 | 4249

4 250 | 0.279 | 45.64 192 | 0.458 ; 38.02 178 | 0.674 | 39.08

15 244 | 0.302 | 44.10 164 | 0.536 | 38.09 139 | 0.844 | 31.72

30 244 | 0307 | 44.42 158 | 0.557 | 33.09 132 | 0.875 | 30.38

60 244 | 0.309 | 44.37 155 | 0.565 [ 31.68 128 | 0.891 | 29.58
I1C(0) 241 0.311 | 43.54
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TABLE 2. Numerical results of the PCG using (Ma);.c for Example 5.2

n =129 x 128
j=0 i=1 ji=2

ITER | P-time | I-time | ITER | P-time | I-time | ITER | P-time | I-time
226 0.051 | 11.93
217 | 0.070 ] 11.49 188 | 0.097 | 10.51 182} 0.126 | 10.82
211 | 0079 11.11 159 | 0.130 9.19 148 | 0.191 9.33
208 | 0.083 ] 10.94 142 | 0.146 8.34 124 | 0.223 8.04
16 207 | 0.086 | 10.88 131 | 0.154 7.74 112 | 0.239 7.37

32 204 0.087 | 10.74 127 0.159 7.54 105 0.247 6.95
I1C(0) 203 | 0.089 | 10.87

00 & N =3

n = 241 x 240
j=0 j=1 ji=2
ITER | P-time | I-time | ITER | P-time | I-time | ITER | P-time | I-time
425 [ 0.181 | 78.87
407 | 0.244 | 74.39 352 | 0.343 | 68.89 341 0.443 | 71.55
3971 0275 72.46 208 | 0.456 | 60.13 277 | 0.670  61.36
15 388 | 0299 71.15 251 0.538 | 51.29 214 | 0.831 | 48.95

30 3851 0.304 | 70.49 240 [ 0.556 | 49.47 198 | 0.864 | 46.01

60 383 1 0.305 | 69.89 236 | 0.564 | 48.72 191 0.880 | 44.72
IC(0) 3831 0.310 | 70.96

L R

6. Conclusions

We presented in this paper three types of block incomplete factoriza-
tion preconditioners which can be computed in parallel. The k-block in-
complete factorization preconditioner M]" is not recommended for use be-
cause of its poor convergence rate, and the k-block preconditioner (Mg);c
is recommended only for large k since it requires much more storage
and arithmetic than other types of block preconditioners for small k.
The k-block preconditioner (Ma);c yielded good performance results as
compared with the standard /C(0) preconditioner, so this type of block
preconditioner is strongly recommended for use. Notice that the number
of arithmetic operations for constructing the block incomplete factoriza-
tion preconditioners grows as j becomes large. It was observed that the
optimal value of 7 usually ranges from 1 to 3 for test problems used in
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this paper. Future work will include parallel implementation of the PCG
using the k-block incomplete factorization preconditioners.
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