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TOEPLITZ OPERATORS ON WEIGHTED ANALYTIC
BERGMAN SPACES OF THE HALF-PLANE

S1 Ho KANG AND JA YOUNG KIM

ABSTRACT. On the setting of the half-plane H = {z + iy|y > 0} of
the complex plane, we study some properties of weighted Bergman
spaces and their duality. We also obtain some characterizations of
compact Toeplitz operators.

1. Introduction

Let H denote the half-plane in the complex plane C and let dA de-
note the usual two-dimensional area measure on H. For 1 < p <
and r > 0, we define B”” = {f|f is holomorphic on H and |||}, =
Ju 1 f(2)IPKu(z,2)7" dA(z) < oo}, where Ky(z,w) = ~7rTz—-1-'ﬁ_)"' In fact,
Toeplitz operators on holomorphic Bergman spaces of unit disk have
been well studied(see [1], [2], [4], [5]) and we study Toeplitz operators of
Bergman spaces defined on upper planes(see [3]). Since B2 is a closed
subspace of L?", there is a unique orthogonal projection P : L*™ —s B%"
defined by P(f)(w) = (2r + 1) f, f(2)Ku(z,w)"*" Kgu(z,2)"" dA(z) for
all f € L*". Then we can show that the dual space of BP" is B%", where
%+% =1and 1 < p < co. We also study the pseudo-hyperbolic metric on
H and Toeplitz operators. For f € L*", we define T¢(g) = P(fg). Then
Ty is bounded. We show that Ty is compact if and only if f € Co(H)
whenever f € H*" and lim, ., f(2) = 0.
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2. Weighted Bergman spaces

For 1 < p < oo and r > 0, we define B” = {f|f is holomor-
phic on H and ff; = (S F(2)PKn(z,2) " dA(2))" < oo}, where

Ky(z,w) = W(z =7
and Kp(z,w) = m.T)f is the reproducing kernel for B*%(B) = {f|f is
holomorphic on B } N L?(B), where B is the unit disk.

. In fact, Kg(-,w) is the reproducing kernel for B*?

LEMMA 2.1. (1) (2r + 1)Kg(-,w)'*" is the reproducing kernel for
B*"(B).

(2) For f € B> and g(z) = i(z € B), let h(2) = af{%ﬁ%. Then
h € B (B).

Proof. (1) Let f € B%"(B) and let f(z) = > oo ya,2" for all 2z € B.
Then

/ £(2)(2r + VEa(zw) " Ka(z, 2)" dA(2)

241 /Zo i( —2- 2") w)™(1 - lzl")”dA(%)
_2r+1 HE;O"; ( —2- )anw”‘/mz"im(l ~ [2[*)*" dA(2)

2
/1 " Sn+m+1ez'(n—m)0(1 . S?)?r dods
0 0

00 1
1
_ 2r+1 Z (n +2r + )anw’"27r/ s2H(1 — s2)¥ ds
s o n 0

(n+2r+1)! nIl2r+1) n
=@r+1)) al@2r + 1! T(n+2r+2) ™"
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Toeplitz operators

(2) Clearly h is holomorphic in B and
[ 1n) PRz, 2) dA)
B

= [ g @) Kl 2,7 @) (0 @Y P dAG)

- / i 1f( Z)ll4+4r 'Z+Z| )zr’(z_*_l)zlsz(z)

24+

If(1 )l (I z)2’dA(z)
H 41+r

- 411+T /H £ (2)PKn(z,2) dA(2) < oo.

Thus h € B2 (B). |

PROPOSITION 2.2. (1) (2r + 1)Kg(-,w)!*" is the reproducing kernel
for B%". Moreover, it is bounded.

(2) Forl<p<ooandr >0, Ky(,w)*" € Br".
Proof. (1) Let g(2) = 1. For f € B?",

L F)(@r + DRn(z0) " Ku(z, 2) dA(z)

=(2r+1) / 92N Kn(e(z), w)  Kn(9(2),9(2)) "l (2)? dA(2)

27‘ +1 (1-—- z)2+2r(1 _ |z|2)2T
/f(g( ))(w+z)2+ (1 — gV (w)Z)22r|1 — z[a+er dA(z)
_re[ s 1 s
S /m(l o s R gy O RO AR
= ! f(w)
(w + z’)2+2r (1 - g“(w))2+2f
= f(w).

Forw=xz41iy € H,

I(2r + D) Ku(z, w)* |loo = sup,eq |(2r + 1) Kp(z, w)*7| < Bly~2-2r,
Thus the reproducing kernel is bounded.
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(2) For 1 < p < oo and r > 0,

[ 1K) PRz, 2) dA()

4r o0 1 o y+t
<
= p(1+r)(p-1) /0 (y + t)Zot2rp-1 [m m{(s —z)2 + (y + 1)’} dedy

ar o0 1
= - /0 (y + t)2+orp1 dy < oo. O

Forw=gz+1iy € H,

/ K (2 w)| ™ K (2, 2)~" dA(2)

./ ,/ 7r{ s — x)? y(2;+t)2}1+r dxdy
> ;/t /y—: {2+ (y-:-t)2}1+r dzdy

4r (e o] 2 o0 1
> — T dzd
= /t y /2!1 2o ey
00

w )

= 00.
Thus Ky (-, w)!*" ¢ BY". Since B?" is a closed subspace of the Hilbert
space L2", there is a unique orthogonal projection P : L — B2r

such that P(f) w) = [y f(2)(2r + 1)K (2, w)* Kg(z, 2)™" dA(2) for all
f € L* and we can extend to P to LP". Since (2r +1)Kg(-, w)'*" is the
reproducing kernel for B2", P|g:- = I. In fact, P|gs- = I. To prove this
fact, we need the following:

LEMMA 2.3. Let 1 < p < o0 and r > 0. Then B>" N BP" is dense in
BPT,

Proof. Take any f in B? and ¢ > 0. For any § > 0, let f5(z) =
f(z+18). Then fs is bounded in H and if g € Co(H) then lims_gg5s = g
in LP" and hence lim;o f5 = f in IP". Since Cc(H) is dense in LP7,
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there is ¢ € Cc(H) such that ||f ~ gll,» < §. For each n € N, let

gn(2) = —rg%);; Then
[ 1) Kate, 7 dA(2)
00 00 7.‘,rn4+2r 4'ry2r
= dzd
/ /. SECTT
Rt 4y / / (22 y5r dzdy

< ¥ (4ny / / 7)? +rsdé‘ds

4+2T(47T
T 242

2+r

Since {gn(2)] = ip= < 1, gn is uniformly bounded on H and hence
fs9n € B> N BP for all n € N and |fsgu(2) — f5(2)]P < 2°|f5(2)PP.
By Lebesgue Dominated Convergence Theorem, lim,_ . |, u |fs gn(2)

—fd(z)lp KH (z:z)—_rdA(z) = 0. Since ”f&gn "'f“p,r < “fJQn ‘fé”w
+1f5 — fllpr» B 0 BPT is dense in BP". 0O
THEOREM 2.4. For 1 < p < oo and r > 0, P is bounded on LP",

Proof. For each z € H, we define h(z) = (Imz)™#, where % + % = 1.
Then h is a positive measurable function and

/H h(2)P| K (2, w)[" Kz, 2)~" dA(2)

f (Ime) H —__ d4(z)

nlz — |FHer

21'———
/ _/oo {(z —s) + (y + t)2}i+r dady,

where 2 = z+iy and w = s+it. Hence [, h(2)? |Kg(z, w)|"*" Ky(z,2)"
dA(z) < Ch{w)? for some C and [, h(z)? Ky (2, w)|*" Ky(z,2)™" dA(z)
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< Dh(w)? for some D. Take any f in LP". Then

|P(f)(w)|
< / (2 + DI ()| Kn (2, 0) Kn(z,2) " dA(z)
H

= @2r+1) /H (K a2 w)[Th(2) K (2, 2) dA(2)
< (2 +1)( /H h(2)| Kt (2, w)] " Kz, 2) " dA(2))
( /H F@)PR() | K (2, )™ (2, 2) dA(2))b

and hence [ [P(f)(w)]P Kp(w,w)™ dA(w) < (2r +1)? C3 [, h(w)?
Ju 1F(2)P h(2)™? |Kg(z, w)|"'" Ku(z,2)™" dA(z)Kp(w,w)™" dA(w) <
(2r+1)? Cv D [, 1f(2)IP Kn(z,2)™" dA(z) = (2r +1)® CiD ||f|[2, i,
P is bounded. O

PROPOSITION 2.5. Suppose 1 < p < o0 and r > 0. Then P|gs- is the
identity.

Proof. Take any f in BP". By Lemma 2.3, there is a sequence (f,) in
B?" N BP" such that lim, o || fo — fllpr =0. Put w = z+iy € H. Then

| fa(w) — f(w)P
1

<
= 1Bw, Y Sy

1 N — s o (Imz2)*
< /B(w‘%)lfn() £(2)!

—ow(8)? ()
1

) |fn(2) = f(2)IP dA(2)

dA(z)

< ey [ 1)~ S@PKa(z2) dA)
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and hence lim,,_o, fo(w) = f(w). We note that

falw) - / £(2)@r + 1)Eale 0)7 Kn(z, 2)™" dA(2)

/ |fa(2) = F())(2r + V)| Kg(z, w)|" " Ku(z,2) " dA(2)

@r + Do — Fllprll Ka(w) g
Since hm,,_,oo Nfn— fllpr =0,

flw) = T}H{.lo fn(w)
= /H f(2)Kn(z,w)*"Ky(z,2) " dA(z)
= P(f)(w).

REMARK 2.6. Since 2i € H, B(2i,1) € H and
/ x8inKu(z,2)"" dA(2)
H

= / 7" (2Imz)% dA(z)
B(2i,1)

< 7rT/ 6% dA(z)
B(2i,)

_ 62"71'”'1_
Hence xpi1 € L' (H). We note that
[ |Pocacsa) )| Kitw,w) da(w)
_ / | / (2r + )Rz, w0 Kz, 2) " dA)| K (w,w) ™" dA(w)
' JB@iy
> / !/ 7" Ky (z, w) 2% dA(z)lKH(w,w)‘r dA(w)
H' By

- / | K (26, w0) | Kt (w, )™ dA(w)
H

= OQ.
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Hence P(xp,1)) ¢ B

3. The dual of B for 1 < p < o

Let 1 < p < oo and let r > 0. By Theorem 2.4, P : [P" — BPT
is a bounded linear operator. If 1 >t l =1 and f € B? then @ is a
bounded linear functional, where (Df(g) Ja9(2)f FG)Ku(z,2) " dA(z)
for all g € B?". We define ®(f) = ®;. Then ® : BY — (BP")* is a
function. Clearly & is linear. For f € B?", ||®s|| = supjy. -1 [®7(g)] <
supygy, <1 Jx 19 f(2)|Kn(z, 2) 7" dA(2) < ||l and hence @ is bounded
and linear. Take any f in ker®. Since (2r + 1)Kg(-,w)"*" € BP", 0 =
®;((2r + DK (- w)*") = [ (2r+1)Kg(z, w)'* f(2)Kn(z,2) " dA(z) =
f(z) and hence f = Oi.e., ® is 1-1. Take any A in (B»")*. By Hahn- Ba-
nach extension theorem, there is a bounded linear functional A : LP"
C such that A|gsr = A and [|A|| = ||A]]. By Riesz sz Representation Theo—
rem, there is h € L?" such that A(g) T 9(2)h(2)K(z, z)" dA(z) for
all g € . Then Ag) = [49(2) (2)h(2)K (2, 2)"" dA(z) for all g € BP"
and P(h) € B?" and hence

Qp(ny(9)
_ /H 9(w) PR (@) Kt (w, w) ™" dA(w)

= /Hg(w) (/H(Zr + Dh(2)Ku(z,w)* Ky(z,2)™" dA(z))
Ky(w,w)™" dA(w)
~ [ CloteKa(z 2" dAG)

= A(9g)

for all g € B?". Thus ®p()(g) = A. By the Open Mapping theorem, this
implies the following:

THEOREM 3.1. For 1 < p < oo and r > 0, (B?")* = B%", where
1,1
14127,
P
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4. The pseudo-hyperbolic metric on H

Forw =z + iy € H, let p,, : H — H be defined by ¢,(z) = ¢u(s+
it) = s"‘ +i- Then ¢, is a bijective holomorphic function. For w,z € H,

d(w, z) }i :{ is the pseudo-hyperbolic distance on H. In fact, we can
show that d is a metric on H. Let B(z,t) denote a Euclidean disk and
forw=z+iye Hand 0 < R <1, let D(w,R) = {z € C| d(z,w) < R}
which is the pseudo-hyperbolic disk with center w and radius R. We
note that z € D(w, R) iff d(z,w) < R iff z € B((z, lﬂi}y), Ig_%%g), Thus

we have the following:

PROPOSITION 4.1. Let w=z +iy € H and let 0 < R < 1. Then

1 + R? 2Ry
Dw, ) = B((z, T 50): 1)
and hence ) g
4 Ry
|D(w, R)| = =R

LEMMA 4.2. Forw=z+1iy € H,0< R< 1 and z € D(w, R),

7r1+ry2+2r 2 7l.1+ry2+2r :

24-2r S |KH(Z,1U)1+Tl S

Proof. This is immediate from the fact that ¢;'(D(i, R)) = D(w, R)
and IKH(Z,’LU)1+T| = F;l?—lﬁm a

LeMMA 43. Let 0 < R<t < 1landletl < p < oo, for any holo-
morphic function f on H, there is a constant C such that |f(z)|P <
‘D(wt DT fD(w o |f (W) PKp(u,u)™" dA(u) for all w € H and z € D(w, R).

Proof. Suppose w = z +1y € H, z € D(w,R) = ¢;}(D(i, R)) and
f is holomorphic on H. Then z = ;!(A) for some A € D(i, R). Put
[ =d(0D(i, R),0D(i,t)). Then B((pw(z) 1) € D(i,t) and hence
) = 16200 = [ Lo, 709 44
1B(ew(2), D1 Jatpuon
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Thus
£GP <= o | 0 5P 44
1
=— P
P /D s | f(w)]P dA(w)
g )0 PKa(i ) dA)
~ wl?y? 7{T(l__t_)2ry2r4r Dwt) glu,u
4t2+2r
P (1708
= TDGw,ope / £ )P K, )" dA(w).
This completes the proof. -

LEMMA 4.4. For 0 < R < 1, there is a sequence {wy} in H such that
U, D{wy, R) = H and there is a natural number M such that for each

z€H, [{klz € D(wy, &)} < M.

Proof. See [3]. O

THEOREM 4.5. Suppose u is a positive finite Borel measure on H.

Then for 0 < R < 1 and 1 < p < o0, the following are equivalent:
(1) Sup sesr Ly fFdu 7
S \f (@)W Kn(z,2) " dA(z)
w(D(w,R
(2) SupweH |D(w11‘;)|1+r~

Proof. Let w =z + iy € H. For f(z) = —Lgz,

(z—w) P

7r1+r

/ )P Kalz2)™ dA) = g iy

and hence f € BP". Since [, |f(2)Pdu(2) 2 [pp,p f(2)Pdu(z) 2
inf,epu,r) [ Ko (2,w) " Pu(D(w, R)) = (G u(D(w, R)),

f |f(2)IP du(z) 2ior 1 — Rogro, p(D (w, R))
T PKatz o dA@ = & VBT 3R B,
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Take any f # 0 in BP". Then

/ FRPduE <Y / P dute),

n=1 'Wn,

where {D(wy, R)} is the sequence in Lemma 4.4

<§j sup | £(2)Pu(Dlwn, R))

—1 z€D(wy,R

#(D('wm R)) p uwou)" u
CZ lD W, R)II_H, D(w,.,z@) 'f(u)l KH( H ) dA( )1

where C is the constant in Lemma 4.3

< c-Mzgg‘—’;‘)(-’l"L% / |F ()P Ko, 0) ™" dA(u).

5. Toeplitz Operators on B>"

We note that P : L% — B2" is an orthogonal projection. For
f € L™"(H,dA), we define Ty : B*" — B2%" by Ty(g) = P(fg) for all
g € B?". In this case, Ty is called the Toeplitz operator with symbol f.

LEMMA 5.1. For 1 < p < 00, BP" N L™ is dense in BP",

Proof. Take any € > 0 and any f in BP". For each § > 0, let f5(2) =
f(z+18) for all z € H. Then f; is bounded and f5; € B?". Since Co(H)
is dense in LP", there is g € C¢(H) such that ||g — fl|,» < €. Since

lims o ”96 - g”p,r =0, limso || f5 — f”p,r =0. a

PROPOSITION 5.2. Let f € H™". If there is a compact subset K of
H such that f =0 on H \ K then T} is compact.

Proof. Take any a norm bounded sequence {g,} in B%>". For any
compact subset G of H and any w € G, |gn(w)| = | [ ga(2)(2r + 1)
Ku(z,w)¥ Ky(z,2)™" dA(2)] < (2r + 1lign llor [Ku(,w)™ flor <

T%Iﬁ%l%:' Since {g,} is a norm bounded sequence, {g,} is uniformly

47



Si Ho Kang and Ja Young Kim

bounded on each compact subset of H and hence there is a holomor-
phic function g on H and a subsequence {gn,} of {gn} which converges
uniformly on K to g. We note that [, lgn, (2)f(2) — 9(2)f(2) I* Ku
(z,2)7" dA(2) < (1 fl%r S 19 (2) —9(2)* K (2,2)™" dA(2) and fy

Ty (9n)(2) —P(gf)(2) I’ Kir (2,2)™" dA(2) < |Ifllz, llgn. —9ll3, This
implies that T is compact. a

PRrOPOSITION 5.3. If f € Cy(H), then Ty is compact.

Proof. Since Co(H) is dense in Co(H), there is a sequence {f,} in
Cc(H) such that lim,_o fn = f. Then [Ty, — T¢l| < |fn ~ fllor and
hence T} is compact. a

LEMMA 5.4. -'—R—H—(—(w—)%“;- converges weakly to 0 in B%" as Imw — 0.

Proof. Let f € B¥ N L®" and let w =z + 4y € H. Then

<f KH('yw)1+T > — f(w) (47T)Lﬂ 1+rf(,w)
MK w)*lep/2e @r+ DI|Ku(,w)* o, 20 +1 .
Since limygw—o < f, ﬁ%> = 0 and B% N L*" is dense in B%",

TITflfT('(TuT‘LiT converges weakly to 0 in B> as Imw — 0. 0

THEOREM 5.5. Let f be a nonnegative function in L™,
Then the following are equivalent:
(1) Ty is compact
(2) There is R € (0,1) such that |D(w}3)|l+,' Jow,r f(2)Kn (2,2)77 dA(2)
— 0 as Imw — 0
(3) For any R € (0,1), ID(wR DR Jownr f(2) K (z 2)"dA(z) = 0
as lmw — 0.
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Proof. Take any R in (0,1) and let w = z + iy € H. Then
1
———— 2)Ky(z,2)"" dA(z
ST R CLACDMZD

(1 —_ R2)2+2r .
- (4 )1+ R2+2ry2+2r /D wR) f(2)Kp(z,2)7" dA(2)

IKH(Z,’UJ)I_HF
<C flz
ooy T a( 0P TG,
Ty(Ku(,w)*)  Ku(,w)™r
<C ,
- <MKH(',w)”'H2,r (IKH(',W)“’llz.r>2,r
I Ty (K (- w)* 7)o
<C :
T N EeGw),
and hence we have (3). It remains to show that (2) implies (1). For each
neN, let K, ={(z,y) €Cl-n<z<n,i<y<n} For fo=f xx,,
Ty, is compact and

Ky(z,2)7" dA(z)

1Ty = Ty
= sup [ fEPeKalz2) T dAG)
lgllzr=1J H\K,
1
SCsup————-———/ f(2)2Ky(z,2)" dA(2).
wedt |D(w, R Jim ki )npw.R) (2)'Kn(2,2) (2)
This implies limp_.o ||Tf — T%,|| = 0. Hence T} is compact. O

LEMMA 5.6. For f € H®", |f(w) — f(2)| < 2||fllcord(w,z) for all
w,z € H.

Proof. Take any w € H. Let ®(z) = %ﬂ Since lim,_,, £2=/®) —

o Z~w
f'(w), ® is bounded on H \ {w}. Hence we may assume that ® is holo-
morphic and bounded on H. For any sequence {z,} in H such that
2n — 29 € OH, limsup,_o |®(2,)| £ 2||flloo,r- By Generalized Maximum
principle, |f(2) — f(w)] < 2|} flloo,rd(2, w). 0

THEOREM 5.7. Suppose f € H®" and lim,_ f(2) = 0. Then Ty is
compact if and only if f € Cy(H).
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Proof. Suppose that there is § > 0 and a sequence {w,} in H such
that lim,_(Imw,) = 0 and |f(w,)| > § for all n. By Lemma 5.6, there
is R > 0 such that | f(2)| > § for all z € D(wy, R) for all n. Since

Sown,my FR 1Ka (w,0)7) [y 1K (20) 7 K p(2,0)17| Kp (2,2) 7 dA(2) K (w,w) ™" dA(w)

2 1+R7?
(21r£——%—lmwn)'

< "f”go‘r ||KH(-,w,,)l+'”2‘r ...[-é-r(xmlw")z-rzr ( 1& )2+2r (IERE Imwﬂ) T LE“Q——I___R < o0,
(2 P Imwn)

(Rl i ) = o oo oot S
For f € H®", g € L°" and h € B*, T,Ty(h) = T,(P(fh)) =

Ty(fh) = Ty(h) and hence Tjyz = T3; = T57Ty is compact. Since
. . 1+r : 1+r
oo (TP b ot TRnaioer) = 00 f € ColH). O

o ? 1K wa)* (|2,
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