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A NON-UNICELLULAR OPERATOR

Joo Ho KANG AND YOUNG So0 Jo

ABSTRACT. In this paper, we want to give an operator which is not
unicellular. We try to prove the non-unicellularity of the operator
by using the method given in [8].

1. Introduction

The study of invariant subspaces is one of the most important, most
difficult, and most exasperating problems of operator theory. One of
the questions about invariant subspaces is the following : is there an
operator whose lattice of invariant subspaces is isomorphic to the pos-
itive integers? In other words, is there an operator for which there
is an one-to-one and order-preserving correspondence n — M, for
each n = 0,1,2,---,00, between the indicated integers(including oo)
and all invariant subspaces? An operator satisfying the above condi-
tion is called to be unicellular and we have such well-known operators
: Donoghue weighted shift operator, Volterra operator, etc. And there
are many ways to solve the problem. We have investigated and found a
sufficient and necessary condition which a strictly lower triangular op-
erator can be unicellular and showed the unicellularity of the Donoghue
weighted shift operator under a certain condition in [8].

In this paper, we want to give an operator which is not unicellular.
This investigation will give an information under which condition a
strictly lower triangular operator can be unicellular or not.

We first introduce some definitions and a theorem. Let H be a
Hilbert space and A an operator on ‘H. Let M denote a subspace
of H. M is invariant under A means that Ax € M for all x € M.
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The collection of all subspaces of H under A is denoted by LatA. An
operator A is unicellular if the collection LatA is totally ordered by
inclusion. Let A be a bounded operator with || A || < 1 on £2, and lét
{eg,e1,- -} denote the standard basis for £2. Let z be a column vector
in £2. Then A"z is a column vector in £2 for each n = 1,2,---, and
we have an infinite matrix [z, Az, A%z, ---]* which will be denoted by
S:(A). The matrix S;(A) is a bounded linear transformation on ¢2.

THEOREM 1([8]). Let A be a strictly lower triangular operator with
| All <1 and U the unilateral shift on £2. Then A is unicellular if and
only if for any z = (1,z1,--- )t € £2, S,(U*N AUY) is one-to-one for
every N =0,1,2,--..

2. An Example

Let Wy and W, be operators on ¢2 defined by the following:
(Wl)k k+1 = 7‘2k+1 and (Wg)k k+2 — Tk+1 for k = 0, 1,2, --- and the
other entries are zero, where 0 < r < 1.
Then, from easy computation, we have the following facts.

i) (Wln)k ik = p2kt+1,2k43 | p2k+2n—1 _ T“("+2k), k=0,1,2,---.

i) (W3)k angk = rhTirkts . pht2n=l o pnlnth) £ —0,1,2,--- .

iii) (Wf—ng)k ntjik = rOmDEITRITIAR) o — 012,

iv) (WoW)n m/(WiWa)y m =73 foranyn =0,1,2,--- and m = n+3.

Let B = W7 + W5. Then
B" = (W1 + Wy)"*

=WP + WP Wo + WP2Wo Wy + -+ + WoW P!
+WPTIWE A WETSWEW 4 -+ WEWPT2 4 -
FWPTIWE + WP T WEWL -+ WP 4
+FWAWSTL - WoW W2+ + W W + W

From the expansion of (W; + W5)™, we look at all terms in the above
expansion which contain exactly n — j Wy’s and j Wa’s for 0 < j < n.
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We let ax(n,j) denote the number of these terms requiring exactly k-
interchanges of W) with W3 to obtain W' ?WJ. Let P(n — j,4,k) be
the number of partitions of k = (k1,k2,- -+ ,km), k1 > k2 > -+ > kp,
m<jand k;<n-—jfori=1,2,---,m. Then

_ 0if k> j(n — j)
P(n—j,j,k) =
(n=3,5:k) {liszj(n—j).

LEMMA 2. For positive integers n, j, and k, P(n—j, j, k) = ax(n, j).

Proof. Let (k1,kz,--- , kr) be a partition of k such that "7~ | k; = k,
0<km<kmn1<--<ki <n-—j and m < j. This partition corre-
sponds to a term having n — j W1’s and j Wy’s by the following proce-
dure. Start from the term W' /WJ = WiWy - W WoWs - - - W,

n—j J
Interchange the first W, (from the left side) with W; k; times.
Interchange the second Wy with W) ko times.

Interchange the m-th W with W k,,, times. Then the term given by
the above procedure requires exactly k-interchaning of W, with W5 to
get W' TWJ.

Reversing this procedure each term having n - j Wy’s and j Wa's
which needs exactly k-interchanges of Wy with W, to get W'/ WJ,
determines a partition of k into at most j parts, each < n — j. So,
ak(n’j):P(n—jaj’k)' g

THEOREM 3. Let B = W, + W,

) Bfny; = (WP 7Wi)onts(L + ar(n,j)r® + az(n,j)rs +---
+@j(n—j)(n, j) ¥ ®™=9) for all 0 < j < n, where ag(n, j) = 1.
ii) Bf ,4; = B} (=) for each 0 < j < ng, where
5 if n is even
no = n—1 . .
>~ ifn is odd.

Bf .. .
ili) g2t <7 for all 0 < j < ng.
BO n+j+1
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iv) onti < prtno=(ntd) for 0 < j < nq.
BO n+ng
Proof. i) BE .., = (WP Wi + Wy 'woawiwi™! + - +

wi WI""J.)0 ot By the definition of ax(n, j),

B iy = (Wl"_jWg)o nti(1+ ar(n, )r + ag(n, H)ré + - + aj("_j)(n,j)rsj("“j)).
ii) (Wln—JWg)o ntj = ’f'n2_nj+j2 = (Wszn_J)o 2n—j for 0 < j < n.
Since ax(n, j) is the number of terms requiring exactly k-interchanging
of W, with Wz to obtain W' W}, and since ax(n,n — j) is equal to
the number of terms requiring k-interchanging of Wy with Wi to get
W{W; ™7, we have ax(n,j) = ar(n,n — j). Hence,

Bg n+j

= (W1n_3W2J)0 n+j(1+al (naj)"'3+' ctain-g (n,j)T3j(n_j))

=(WiW3 )0 2n—j(1+a1(n,n — j)r°+ - +ajm-pn,n — jr¥"=9)

= Bg 2n—~j-

iii) By i) and Lemma 2,

Bg n+j
= (WP IW3)o nys (14 P(n =355, r 4+ -+ P(n = §,3,5(n = 5))
rSj(n—j))

o0
= (WP W4)o ni; O P(n—j, 5, k)r’¥,
k=0
since P(n — j,5,k) =0 if k=0 or k > j(n — j). By Theorem 3.1 in [1,
p.33],

= - 3k (r®)n
kZ:OP(n — 53 k)rr = —_——(7'3)17,—3'(7'3)3"
where (r%), = (1 —r3)%(1 = r3)k1...(1 = 73) for k = 0,1, -. Hence,
(r*)n

B nyj = (WI™Wi)o ", (),
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and (r?)
B’n i W" J— 1W.7+ i T n .
0 nti+l = )o ntj+1 (r3)n_j—1(r3);+1
Thus,
Bonti _ (WP IW3)o ntsi(1 = (r3)11)
Bf pijrr (WP W o nggea (1 = (r3)779)
rn’-nj+j2 1-— (,,.3)j+'1

= GG 1 — (r3)nd

Since0<j<n—-1j+1<n—j Hence,l—%;:-)éj—lf 1. And
rn=2i+l « p for all 0 < j < ng. Thus 2024 < .,

By ntit1
iv) Dot = Phows Boowier . Bortrast o pmomi for all 0 < j
0 n+ng 0 n4j+1 0 ntj+2 0 n+ng
< ng. a

Now, we will show that the operator A = B* is not unicellular.
We need show that r can be chosen so that S.(A) is not one-to-one.

1 0 0
0 Blg: Bly, 0
0

Se(4) = B%, B?%3 B%4 0

Let D be a diagonal operator defined by Dy, n = B ,4n,, Where

z if n is even
g = { 2
95—1 if n is odd
Then Se(A) = D(Qy + Q2), where Q, is defined by
—B—,?—Q—*— n+1<k<2n—-1, n>2
0 n+ng
(Qink=191 n=%k n=0 or 1
0 otherwise

and Q3 is defined by
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ﬁ&“— k=n, or k=2n n>2
0 nt+ng
(Qnk=141 k=2 n=1

0 otherwise.

Let @ be defined by

1 if n=k=0 or 1

1 if n>2 niseven, k—n=73
e=1 if n>2 nisodd, k—n="51or 25141

0 otherwise.

LEMMA 4. For the above operators, we have the following.
1) Q is a semi-Fredholm operator with index @ > 1.

2) Q1 — Q is bounded and ||Q; — Q|| < .

3) Q2 is Hilbert-Schmidt.

Proof. 1) Q is surjective. Since Q(z) =0 for all z = (0,0, z2,0,---)*
in £2, {ez} C KerQ. And KerQ* = {0}. Hence @ is a semi-Fredholm

operator with index@ > 1.
2) For n > 4,

D> (@1 Qnk
k=0
( 2n—1

if n is even

=4  2n-1
BT . .
E B if n is odd
0 n+4ng
k=n+1
k—n#ng
\ k—n#no+1
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2n-1
< 2 Z rrtno—k by Theorem 3, iv)
k=ng+1
< 2r4ri4.0) since ng > 2
2r
1—-7

o0
Thus » (Q1— Q)nk < £% foralln=0,1,2,---.
k=0

[2EtD] ifk=4+3d, d=0,1,---
[2) otherwise

where [25] is the greatest positive integer that does not exceed 2F.
Then

Consider k£ > 3, let kg = {

¢ k—1
BT"UL—— if k is even
0 n+ng
hd n:jc:l
D Q1= Q)n k=9
k=0 it S
1, n+ng
Gy
k—1
< 2 Z prino—k
n=kg+1
< 2(r+r’+...), n>2, since k>3
< 2r
l1—7r
> 2r
Th —Qn forallk=0,1,2,---.
ennzz;)(Ql Qnk < T for
By the Schur test, Q; — @ is bounded, and ||@; — Q|| < .
3) F%Y‘%f; = 51,—?01“;?': < r™ for each n = 2,3, ---. So, ()2 is Hilbert-
Schmidt. O
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Thus if » > 0 is small enough, then ||Q; — Q]| can be made ar-
bitrarily small. Then Q = (Q; — @) + @ is a semi-Fredholm oper-
ator with indexQ) =index@; > 1. Since Q5 is compact, index(Q1 +
Q2) =index@; > 1. Thus dim Ker(@Q; + @2) > 1, so Q1 + Q2 is not
one-to-one. Therefore S.(A) is not one-to-one.

EXAMPLE. Let A = B*, where r is sufficiently small so that 1—2}; is
small enough. Then A is not unicellular.
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