J. Korean Math. Soc. 37 (2000), No. 3, pp. 491-502

RIBBON CATEGORY AND
MAPPING CLASS GROUPS

YONGJIN SONG

ABSTRACT. The disjoint union of mapping class groups Iy 1 gives
us a braided monoidal category so that it gives rise to a double loop
space structure. We show that there exists a natural twist in this
category, so it gives us a ribbon category. We explicitly express this
structure by showing how the twist acts on the fundamental group
of the surface Sg1. We also make an explicit description of this
structure in terms of the standard Dehn twists, as well as in terms
of Wajnryb’s Dehn twists. We show that the inverse of the twist 7,
for the genus g equals the Dehn twist along the fixed boundary of
the surface Sy 1.

1. Introduction

Let T'yx be the mapping class group of compact orientation surface
Sy, of genus g with k boundary components. It has been known (cf. [6])
that there is a binary operation on the disjoint union of I'y’s induced
by a certain connected sum of the surfaces. In [2] it is shown that
there is an interesting extra structure which is a braiding on the disjoint
union of I'y;’s. This gives rise to a braided monoidal category. In
the homotopy theoretic point of view, from this we obtain a double
loop space. This fact and the explicit expression of the braiding are
important informations for the calculations of homology operations of
mapping groups.

A braided monoidal category is a monoidal category equipped with
a braiding which is a family of commutativity isomorphisms satisfying
the Yang-Baxter equality. A ribbon category is a braided monoidal
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category equipped with a twist which is a family of self-isomorphisms
compatible with the braiding and the duality. The twist is an algebraic
imitation of the twist of ribbon graphs. A ribbon category (or a braided
monoidal category) has been playing a key role in the theory of quantum
groups and of quantum invariants of knots. A ribbon category gives
rise to invariants of knots (cf. [7]). The ribbon category obtained in
this paper, however, does not give an interesting invariants because the
endomorphism set of the unit object is trivial.

In this paper we give a complete and explicit proof that the dis-
joint union of mapping class groups I'y; gives rise to a ribbon cate-
gory. We express the twist in three different ways: as an element of
the automorphism group of the free group, geometrically, and in terms
of the standard Wajnryb generators. In the proof of Theorem 3.9 we
explicitly describe the twist 7, as an automorphism of the free group on
{z1,v1," - 1 Zg,Yg}, Where T1,y1,- -, T4, Yy, are the generators of m .S,
which are induced by the standard Dehn twists of Figure 1. It is im-
portant to take the fundamental relator R of 715, as [y1, 1] - - - [y, T,
rather than [z1,31] - - [Z4, Y, in our setting. Geometrically, the twist 7,
is equal to (the inverse of) the Dehn twist along the boundary of the
surface S;;. We can describe 7, as a product of the standard Dehn
twists by using the classical tools by Lickorish ([5]). We can also de-
scribe it in terms of 2g + 1 Wajnryb generators. We believe
that these descriptions of the Dehn twist along the boundary
are of independent interest.

I would like to thank all the members of Department of Ap-
plied Mathematics of Fukuoka University for their hospitality
during my subbatical visit for one year.

2. Mapping Class Groups and Braided Monoidal Category

Let S, be a closed connected orientable surface of genus g.
Let S, be the surface obtained from S; by removing an open
disk from S;. The mapping class group I'y; is the group of
isotopy classes of orientation preserving self-diffeomorphisms
of S;1 which are the identity maps on the boundary of Sg;.
The group I'y; is generated by 3g — 1 standard Dehn twists
ar, v 5 g, by, v, by wy, - -+ ,wy—q of Figure 1 (cf. [1]).
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The composition of Dehn twists or homeomorphisms of S,
will be written from left to right. The mapping class group I'y;
acts on m.S,; on the right. Wajnryb showed in [8] that Iy is
generated by 2g +1 Dehn twists a1, a3,b,- -+ ,bg, w1, -+, Wy—1 and
gave a complete form of presentations of them.

We recall the definition of braided monoidal category (cf.
[4],[7]). We will deal with strict monoidal category. This does
not harm the generality because according to MacLane’s coher-
ence theorem, any (braided) monoidal category is equivalent to
a certain strict (braided) monoidal category.

a; ay Qg
® e 0
w1 Wy (dg—-l
b b, by

Figure 1.

DEFINITION 2.1. A monoidal category (C, ®, F) is a category
C together with a functor ® : € xC — C and an object E
satisfying
(a) ® is associative
(b) E is a two-sided unit for ®
The product ® is usually called tensor product. F is called the
unit object.

DEFINITION 2.2. A monoidal category (C, ®, F) is called a
braided monoidal category if it has a braiding which means a natural
family of isomorphisms

B={Bap : A®B — B®A}

where A, B run over all objects of C, such that the following
diagrams commute:
BagB,Cc

ARBRC —_— CRARB

14®8B,c \ /‘ Ba,c®lp

ARC®B
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Ba,BeC

A®B®C —_— BRC®A

Ba,B®1c \ /‘ 13®Ba,c

B®ARC

The naturality of the braiding means that for any morphism f: A —
A, g: B — B, we have

(9®f) © Ba,p = B,z © (f®9) -

Note that the commutative diagrams of Definition 2.2 imply the Yang-
Baxter equality:

(1c®Ba,)o(Ba,c®18)0(1a®BB,c) = (Br,c®14)0(18Q0F4,c)o(B4,881c).

Let C(M) = Hy>el'y,1 be the disjoint union of mapping class groups
Iy for g > 0, that is, C(M) is a category whose objects are nonnegative
integers g and morphisms are as follows:

r ifg=~h
Hom(g, h) = { 0" itazh

It was shown in [2] that C(M) is a braided monoidal category. The
tensor product of C(M) is defined by a certain connected sum (cf. [6]).
More precisely, the product

Fg,l X I-‘h,l amand Fg+h,1 3 (a, ﬂ) — a®13

is obtained by attaching a pair of pants, which is obtained from a sphere
by removing three open disks from it, to the surfaces Sg; and Sy along
the boundary circles and extending the identity map on the bound-
ary to the whole pants. The fundamental group of S, is isomorphic
to the free group on generators xy, ¥y, - , %4,y Which are induced by
the standard Dehn twists aq,by,- - , a4, by, respectively. I'g, can be
identified with the subgroup of the automorphism group of m Sy, =
Fizy 3, 20, that consists of the automorphisms fixing the fundamen-
tal relator R = [y1, 1] - - - [Yg, Z4). The (g, h)-braiding By n € T'gyn,1 acts
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on {Z1,Y1,"** , Tgt+h, Yg+n} as follows:

T, > SThy ST
U — Syp1S

T, +—— SzpigST
-1
Yq > Syh+gS
Tg41 — 2

Yg+1 — %

Zg+h — Iy
Yg+h > Yn

where S = [y1, T1][y2, Za] - - - [Un, Zn]. It is easy to see that this braiding
satisfies the diagrams of Definition 2.2.

The (1, 1)-braiding 0 1 is described in [2] in terms of the Dehn twists
a1, b1, ag, by, wy as follows:

(23) ,61,1 = (a1b101)4(a2b2 (alblal)"lwlal blafbl)_:’.

Note that the Dehn twists a1, by, a2, bz, wy act on m 52y = Fiz) 41,224}
as follows:

a1 : Y1 — yzy’
by : 1 — Ty

. -1
Az : Yo > Yoy

(24) b2 D Tg > TolYs
wy: I — 2f1y2$2y2_1
h— %=

—1
Ya 21 Y2

where z; equals z7'y,Toy; " which is induced by the Dehn twist wi.
These automorphisms fix the generators that do not appear in the list.

Let 5; = (aibia,-)“(ai_,.lbiﬂ(a,vb,-a,-)‘lwia,-biafbi)‘s. Then the (g, h)—
braiding 3, can be expressed in terms of the standard Dehn twists as
follows.

1

Bon = (BrbPr-1-- - B1)(Br41Br- -~ B2) - - (Bgsn—1---Bg) -
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3. Ribbon category and the Dehn twist along the boundary

Let C(M) = Lg>ol'g,1. In the previous section it has been shown that
C(M) forms a braided monoidal category. In this section, we show that
we can get a ribbon category by attaching to C(M) the mirror symmetry
of C(M). The ribbon category, which plays a key role in the quantum
theory and the invariants of 3-manifolds induced from it (cf. [7]), is
a braided monoidal category equipped with some additional structures,
which are twist and compatible duality.

The twist in the category C(M) is represented by an element of each
['g,1. In this section we describe the twist in two ways. We first show how
it acts on the fundamental group of the surface. Secondly we explicitly
express it in terms of the standard Dehn twists. We can also describe
it in terms of Wajnryb’s Dehn twists. The twist in I'y; turns out to be
equal to the inverse of Dehn twist around the boundary of S ;.

DEFINITION 3.1.  Let C be a braided monoidal category. A twist
in C is a natural family of isomorphisms

T={r4 : A— A}

where A runs over all objects of C, such that for any two objects A, B
of C, we have

(3.2) Ta®B = [B,4 © Ba,p © (T4 ® TB).

By the naturality of 7 we mean that for any morphism a: A — B in C,
we have 7p 0 @ = a0 74. From the naturality of 7, we get the following
which is equivalent to (3.2):

(3.3) TaeB=PBAo(TB®Ta)o L= (TA®TB)0PBACLAB -

Note that 7 = 1 for the unit object E.

DEFINITION 3.4. Let C be a monoidal category. We assume that
for each object A of C there are an associated object A* and two mor-
phisms

(3.5) ea: A"Q®A— E, ceq: E— AQA*

which are called evaluation and coevaluation, respectively.
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The rule A — (A*, eqa,ceq) is called a duality in C if the following
equalities hold:

(3.6.a) (la®ea)o(cea® 1) =14,

(3.6.b) (ea®1gx)o(las ®cey) = lge.

For a braided monoidal category C equipped with the braiding 3 and
the twist 7, we say that the duality in C is compatible with 8 and 7 if
the following equality holds for every object A of C:

(37) (TA®1A4)OCCA=(1A®TAt)OCCA.

DEFINITION 3.8. A monoidal category C is called a ribbon category
if C is equipped with a braiding 3, a twist 7, and a compatible duality
(%, e,ce).

One of the fundamental examples of a ribbon category is the cate-
gory of finite dimensional representations of a quantum group (cf. [7],
chapter XI). Now we derive a ribbon category from'C(M) = I50T,1 by
attaching the mirror symmetry of C(M) to itself.

Let D(M) be the category which is a union -of C(M) and its mirror
symmetry C*(M) = Hy>oI'g-1. The objects of D(M) are of the form
either g or g* for a nonnegative integer g. The morphisms of D(M) =
C(M)UC*(M) are as follows:

Hompy(g, k) = Homer(g, h)
Hom'D(M)(gah*) = 0:I_IOHI'D(I\/I)(g*,h’)

* * F 1f = h
Homp(um)(g*, ") = {69,1 ifz%h .

Homp)(0,0%) = {¢} and Homp(as)(0*,0) = {#}, where ¢ and 1 are
isomorphisms and are the inverses of each other.

The category D(M) is a monoidal category equipped with the tensor
product as follows: Let g, h be nonnegative integers. The tensor product
is defined to be commutative and defined as follows:

g®h = g+h
g* ® h — 0* — g ® h*
g°Qh" = (g+h) for gh>0
g ® 0* — O* — g* ® 0*
for all nonnegative integers g and h.
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It is easy to see that the assignment g — g*, h* — h gives rise to a
duality of D(M). For each object g the evaluation equals ¥ : g* ® g =
0* — 0, and for each h* the evaluation also equals % : A ® h* = 0* — 0.
Likewise, the coevaluation of each object equals ¢ : 0 — 0*. It is easy
to see that these morphisms satisfy (3.6.a) and (3.6.b).

D(M) is a braided monoidal category with a duality. We now show
that D(M) is a ribbon category, that is, it has a natural twist.

THEOREM 3.9. D(M) is a ribbon category.

Proof. 1t suffices to find a twist 7, : ¢ — g for each positive inte-
ger g, since C*(M) is symmetric to C(M). We regard I'y; as the sub-
group of the automorphism group of the free group on 1,43, -, T4, Yq
that consists of the automorphisms fixing the fundamental relator R =
[th, 1] -« - [Yg, o], Where 1,71, ,%4,y, are the generators of m.S,y
which are induced by the Dehn twists a1, by, - - - , ag, by, respectively (Fig-
ure 1). Then we define 7, to be the automorphism satisfying:

il — RIL‘lR_l

3! — Ry R™!

z, +— Rz R™
Yg — Ryg R

where R = [y1, 1] - [yg, Tg]. We show that 7, satisfies the equality
(3.2), that is

(310) Tr4s = ﬂs,rﬂr,é(Tr ® TS)'

For positive integers m,n with m < n, let

Rm,n = [yma xm] ce [ym -'L'n]

Let z1,¥1,** , Zrts, Yr+s De the generators of mS,y51. Let B = Ry -y,
be the fundamental relator. Then we have

Tr®Ts -1
T — Rl 1-!131R1 -

Br,s -1
— Rl SR8+1 8+'I‘R1 sR1 S'T8+1Rl s‘R1 8 s+1 s+rR1 s = R$8+1R

B, Re R7L.
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Similarly, we have

vy = Rleﬂla crcty Ty B erR~17 Yr RyrR—l-

For Z,11, Yrs1,**, Trysy Yrs, We have
Tr®Ts -1
Tri1 — Rr+1,T+Sx’I'+1R'r+1,r+s
Br,a —1
— Rl,siﬂlRl,s
ﬁs,r

— Rl,rRr+1,r+sR1—,11-R1,rxr+lRl—,ql-Rl,rR;.&Lr.ysRi—,,l- = R$r+lR—1-
Similarly, we have
Yry1 Ryr+1R_l’ crty Tpgg R$r+sR_1, Yrys Ryr+sR—1-
Hence the equality (3.10) holds. O

We now find the expression of the twist 7, : ¢ — g in terms of
the standard Dehn twists of Figure 1. We use the fact that the in-
verse of the twist in I'y; defined above equals the Dehn twist along
the fixed boundary of the surface of genus g which acts on m15g,1 as
Ty = R7'm R,y = R7'YR, -,z — R7z4R,y; — R7'y,R. Let
(BD), be the Dehn twist along the fixed boundary of the surface S,,;.
We obtain the expression of (BD), in terms of the standard Dehn twists
using the tools of the classical paper of Lickorish ([5]).

We will first find (BD), and (BD),, and then find the expression of
(BD), for any natural number g. Let a,b,c be the Dehn twists along
the simple closed paths a, 3, in Figure 2.

Figure 2.

Let q1, g2 be the circles which are two boundary components of the
surface in Figure 2. Let hy, and hy, be the Dehn twists along ¢; and g,
respectively. Then we have the following:

LEMMA 3.11 ([5], LEMMA 3).  Let f = acbacb®acbac. Then hy, is
isotopic to h' f.
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Note that ac = ca. Consider the surface Sy ;.

ay Qg
ﬂl q2 ﬂ2 « o .
g+1
N "2
Figure 3.

The simple closed curves o, B;,7; induce the Dehn twists a;, b, ¢; for
i=1,---,9. If g =1, we have hy, ~ (BD);, where =~ means isotopic.
Hence we have
(3.12) (BD), =~ a’b,a?blalbial

since a; ~ ¢; and hy, ~ 1.

Let f; = ciasbiciasbicabicia; fori=1,--- , g. For (BD)2, we first have
hg, = b} fa. Since (BD)g = hg, and fi = hg,, We have (BD)y ~ fofT".
We should express ¢; in terms of the standard Dehn twists of Figure 1.

LEMMA 3.13 ([5], LEMMA 5). Fori=1,---,g, we have
¢ = g7 aig;
where gi = ,-wi_lbi_la?_lci_lbi_lwi_lbi.
From Lemma 3.13 we get the following.

LEMMA 3.14. The Dehn twist along the boundary for genus 2 is
isotopic to

(3.15) (a1b1w1)4b2(a1b1w1)4b§(a1b1w1)4b2(alblw1)4(afbla?bfafblaf)_l.

Proof. Since (BD)g =~ fof!, from Lemma 3.13 we have
(3.16) (BD)y ~ (czazbgczazbgczazbgcwz)(afblafbfafblaf)‘l

where ¢; = (bowybya3biwiba) "Las(bawibralbiwiby). We have the following
equality of Wajnryb ([8]):

agCy = az(bgwlblafblwlbz)“laz(b2wb1a%blw1b2) = (a1b1w1)4.
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Using this equality, we get the formula (3.15). Note that f; commutes
with f;. Hence we get the alternative expression of (BD)s,:

(BD)2 ~ (afblafbfafbl af) -1 (0,1 b1w1)4b2 (a1 b1w1 )4bg (a1 b1w1)4b2 (a1b1w1)4.
O

It is easy to check that the Dehn twist of (3.15) acts on the generators
T1,Y1, T2, Y2 of m.Sy1 as described in the proof of Theorem 3.9, that is,
1 — R'mR, y3 —» Ry R, 25 = R 3R, y, — R 'yR, where
R= [yla xl][y% -'L'Q]-

For an arbitrary genus g(g > 3), we have the following:

THEOREM 3.17.  InTy;, the Dehn twist along the boundary of the
surface S, equals

(3.18) (BD)g = fV o g o f
where
fi = cabicabiciabica; fori=1,--- g,
and
¢; = (bjwj-1bj-105_1¢j_1bj_1w;_1b;) " a;(bjw;j—1b;-103_1c;_1bj_1wj_1b;)

forj=2,---,g.

Note that (BD), equals the Dehn twist along the curve gy (See
Figure 3). We can get the expression of (BD), in terms of the stan-
dard Dehn twists of Figure 1 by the inductive process. Moreover, we
get another expression of (3.18) in terms of Wajnryb’s Dehn twists
ay,a2,by, -+ by, wi, - - ,wy_1, since we have the following equality ([3]):

-1
iy = h,,: aihi

where h; = biwibi+lai+1wz'+1bi+Zbi+lwi+1wibi+1biwiai+1bi+1wi+1bi+2- We
again note that 7, " equals (BD),.
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