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LOCALIZATION AND
MULTIPLICATION OF DISTRIBUTIONS

IAN RiIcHARDS AND HEEKYUNG K. Youn

ABSTRACT. Working within classical distribution theory, we de-
velop notions of multiplication and convolution for tempered distri-
butions which are general enough to encompass the classical cases
— such as pointwise multiplication of continuous functions or the
convolution of L! functions — which most textbook treatments of
distribution theory leave out. Pains are taken to develop a theory
which satisfies the commutative and associative laws.

0. Introduction

In this note we have attempted to present, in a compact and usable
form, the theory of localization and multiplication for tempered distri-
butions. There is a substantial research literature on this problem ([cf.
the bibliography]), and it can be fairly said that the essential problems
have been solved. However, many of these solutions — and even the
definitions which give rise to them — are quite intricate.

What are the problems? Well, consider multiplication. At the text
book level, the product g7 is only defined when g is a C*° function.
This gives an extremely lopsided theory of multiplication — allowing
complete freedom for 7', while placing severe restrictions on g. For
many purposes in analysis one needs symmetrical definitions. Thus the
product of two continuous functions g(z)h(z) is well defined, whether
g is C® or not. The “good” qualities of h (being continuous) balance
the “bad” qualities of g (not being C*°).

It would be nice if any two distributions were multiplicable, but a
little thought suggests that certain multiplications —~ e.g. the square of
the Dirac delta function — make no sense within distribution theory.
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Our objective, then, is to give a definition of multiplication which is
general enough to cover the important cases. We would also like to
prove commutative and associative laws for this multiplication. The
commutative law turns out to be trivial. However, the associative law
is not. The following example illustrates the difficulties. Consider

(1/z) -z - 6(z).

If we group the term as [(1/x) - z] - 6(z) we get 1-6(x) = §(z). But if
we group the terms as (1/z) - [z - §(z)] we get (1/z) -0 = 0. Clearly
d(z) # 0. So the associative law appears to fail.

The way our of this difficulty is to insist that the product of three
distributions must exist as a “whole” or “global” 3-fold operation, and
not merely as a concatenation of 2-fold operations. Then it turns out
that the associative law does hold, and the existence of the product
R(z) - S(z) - T(x) guarantees the existence of S(z) - T(z), subject to
the obvious side condition that R(z) is not identically zero. In fact,
and perhaps surprisingly, R{z) # 0 is the only extra hypothesis that is
necessary.

[A similar situation occurs with Fubini’s theorem. the “global” defi-
nition of the product is analogous to the global definition of the double
integral [fp. f(z,y)d(area), whereas the iterated product corresponds

[o o e o]
to the iterated integral [ [ f(z,y)dydz. It is the global integral
—00 —00
whose existence guarantees Fubini’s theorem.]

We remark in passing that there is a theory of “new generalized
functions” (or super distributions), due to Colombeau ({1984, 1985]),
Rosinger ([1978, 1987]) and others, in which multiplication is uni-
versally defined. However, this theory is not symmetrical under the
Fourier transform, and it leaves out convolution. In fact, no universal
theory which covers multiplication, the Fourier transform, and convolu-
tion can exist. To see this, the previous counterexample — (1/z)-z-8(z)
— suffices. If we consider only multiplication, we can allow z-d(x) # 0;
indeed that must happen to preserve the associative law. But the
Fourier transform of z-6(z) is just (d/dxz) Const; and surely the calcu-
lus law that the derivative of a constant is zero is one that we should
wish to preserve.
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Thus we choose here to work within the traditional theory of distri-
butions, with a view towards completing the application of that theory
to functional analysis. Qur aim is that all of the traditional constructs
of functional analysis — e.g. the multiplication of continuous functions
or the convolution of L' functions — should be included in distribu-
tion theory. Nonlinear theories such as Colombeau’s lie outside of our
scope.

QOutline of the sections: In Section 1 we set the notations. Section
2 deals with localization, i.e., the restriction of a distribution T'(u, v)
to a linear subspace U = {v = 0} of R?. This forms the basis for
the definition of multiplication, which is given in Section 3. That sec-
tion includes a variety of nontrivial examples and also contains the
statement and proof of the associative law. Section 4 gives the proofs
of some technical results about localization, which were stated with-
out proof in Section 2. Finally, Section 5 contains some brief remarks
about the parallel problem of convolution.

It seems worthwhile to list the distinctive features of our approach,
even though this involves notions to be defined later. These features
are: the fact that in dealing with convolution, we are able to get by
with the classical textbook case of it (cf. Section 1); the fact that
localization is defined globally, not locally, which is what makes the
associative law possible (cf. Section 2 and 3); and finally the use of
Lemmas A-C in Section 4, which produce a considerable simplification
in the proofs.

All approaches to the problem of distribution multiplication seem to
have certain features in common: 1. They use tensor products, and 2.
they are complicated. Ours is no exception. However, we believe that
the particular mix of operations presented here reduces the complexity
to a substantial degree. Distribution operations have to be tolerably
simple, or else no one will use them. It is in that spirit that we offer
this communication.

1. Notations and Standing Conventions

We consider only tempered distributions on R9. As usual, S(R?)
denotes the space of “open support” test functions, i.e., C* functions
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which are rapidly decreasing together with all of their derivatives.

[Recall that a function is called rapidly decreasing if it decreases
faster that any negative power of |z| as z — oo. It is called slowly
increasing if it is dominated by some positive power of |z| as |z| — 0.

The standard textbook definition of convolution for distributions
(most commonly given for D’'(R?) extends immediately to tempered
distributions (i.e., to S’(R?) if we make the following obvious modifi-
cations. We say that a tempered distribution S is rapidly decreasing
if, for every test function ¢ € S(RY),

(S *p)(z) = (S¥), p(z — )y

is also a test function, and the mapping is continuous from § to S.
Then, as is usual, we define, for any tempered distribution T":

(T'*S,p) =(T,S(—x) xp).

We write R? = U + V to mean that U and V are complementary
linear subspaces of RY, i.e., that U and V together span RY, and
UNV = {0}. Together with U and V we have vector variables:u, v
such that the (u,v) span R%,U = {v = 0}, and V = {u = 0}. We do
not require U and V' to be orthogonal. However, the measures du and
dv on U and V should be normalized so that dudv = dz =the Lebesgue
measure on RY.

The tensor product S(u)T(v) (often written S(u) ® T(v)) of two
distributions S € §'(U) and T € §'(V) is defined by

<S(U)T(v)’ \Il(u’ 'U)) = <S(u)’ (T(’U), ‘I/('U,, v)>v>u-

We recall that the tensor product always exists, that it is also a tem-
pered distribution, and that this operation is commutative.

REMARK. The tensor product always exists, essentially because it
involves independent variables u and v. By contrast, product of the
form S(z)T(z), involving a repetition of the same variable, may or may
not exist. For example, the square of the Dirac delta function, §(x)2,
has no distribution theoretic meaning. Determining with reasonable
generality the cases where S(z)T(z) does exist is the main point of
this paper.
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2. Localization

Let R = U + V as above. We ask, under what conditions can a
tempered distribution T'(u,v) be localized to the subspace U? That
is, when does it make sense to set v = 0 and speak of T'(u,0)? Since
distributions are not defined pointwise, this is not always possible.
As a first step, we take an arbitrary test function p(u) € S(U), and
then form the tensor product ¢(—u)d(v) (= ¢(—u) ® §(v)), which is
a rapidly decreasing tempered distribution. Then we take the con-
volution T,(u,v) = T(u,v) * [p(—u)d(v)], which always exists as a
distribution. It is the structure of T, (u,v) which determines whether
or not T'(u,v) is localizable to U.

DEFINITION. Let R? = U + V. A tempered distribution T'(u,v) is
localizable to U if, for all p(u) € S(U), the distribution

T (u,v) = T(u,v) * [p(-u)é(v)]

is a slowly increasing continuous function. In that case we define the
distribution T'(u,0) on U by

(T(u,0), p()) = Ty(0,0).

REMARKS. (1) To see the motivation for this definition, we consider
some extreme cases.

If we replace @(—u)d(v) by a test function ¥(—u,—v) (equivalent
to setting U = RY), then the convolution T'(u,v) * ¥(—u, —v) is al-
ways continuous and slowly increasing; its value at (0,0) is (T, ¥). At
the opposite extreme: if we replace @(—u)d(v) by 6(u)d(v) (setting
U = {0}), then T(u,v) * 8(u)d(v) is just T'(u,v). Obviously the con-
volution T'(u,v) * ¢(—u)é(v) smooths out T'(u,v) somewhat, but to
an intermediate degree. The smoothing is in the u-direction, whereas
some sort of continuity in the v-direction must already be present.

(2) Suppose that T'(u, v) itself is a continuous slowly increasing func-
tion. Then the distribution theoretic convolution can be replaced by
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an ordinary integral:

To(u,v) [p(=u)d(v)]

//T(a b)po(a — u)é(v — b)dbda
=/UT(u+a,v)<p(a)da

Then setting (u,v) = (0, 0), we obtain (T'(u, 0), = [, T( a)da,
just as we would expect.

(3) The restriction of T'(u,v) to U depends only on U, not on the
complementary subspace V. Thus let V' and V'’ be subspaces comple-
mentary to U. Let the corresponding coordinates be (u,v) and (v/,v")
respectively. Then v = v’ everywhere, and u = u’ on the subspace U.
Hence with T, (u,v) as above, the corresponding T,, for the decompo-
sition R? = U + V"' is simply T, (v/, v).

(4) In our definition, we require T,(u,v) to be continuous at all
points (u,v) and not merely at (0,0). This is a global criterion: it
means that if T'(u, v) is localizable to U, then so is any translate T'(u —
up, v — vp). It is precisely this feature which allows the associative law
to hold. (See also the proof of Theorem 2 in Section 4.)

EXAMPLES. 1. Let R? = R!. Then the delta function §(x) cannot
be localized to the 0-dimensional subspace {0} (since d(z) is not a
continuous function).

2. Let R? = R? with the usual zy-coordinates. Then the tensor
product §(z)1(y) can be localized to the z-axis (trivially, since 1(y) is
constant); but é(z)1(y) cannot be localized to the y-axis.

Less trivial examples will be given below.
We now state three theorems concerning localization.

THEOREM 1 (Continuity). The functional T (u,0), when it exists, is
a distribution. That is, if ¢, — 0 in S(U), then (T'(u,0),pn(u)) — 0
inC.

THEOREM 2 (“Fubini Theorem”). Let R? = X; + X3 + X3 be
a decomposition of RY into three complementary subspaces. Let
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T(z1,z2,23) be localizable to Xi. Then T(z1,z2,23) is localizable
to X1 + Xo, and the localization S(z1,x2) = T(x1,22,0) is further
localizable to X1, and finally S(z1,0) = T'(z4,0,0).

THEOREM 3 (Variable Constants Theorem). Let R? be decomposed
into three complementary subspaces X;, X2 and X3 as above. Let
T(X1) £ 0 be in 8'(X;) and let S(z2,x3) be in 8'(Xy + X3). Then
S(z2, x3)is localizable to X, if and only if T'(z1)S(z2, z3) is localizable
to Xy + Xo. When that happens

T(21)[S(z2, 3)|zs=0) = (T(21)S (22, 23)) s =0
[As noted in the Introduction, the proofs of Theorems 1-3 are given
in Section 4.

3. Multiplication

To define the product S(z)T'(z) of two tempered distributions in
S'(RY), we first form the cartesian product R?? = R?* R? of R? with
itself. For convenience, let z denote the first ¢ variables and y the
second set of g variables, so that (z,y) represents an arbitrary point
in R%9. Then the tensor product S(z)T(y) (or S(z) ® T(y)) always
exists, no matter what the distributions S and 7" might be.

DEFINITION. Two tempered distributions S(z) and T'(z) in §’'(RY)
are multiplicable if the tensor product S(z)T'(y) is localizable to the
subspace U = {y = z}. When that happens, we define the product
S(z)T(z) to be that localization.

REMARK. (1) Of course the product may not exist, because the
localization does not always exist.

(2) On the subspace U = {y = z}, it makes no difference whether
we use the variable x or y or (—”“%Q

(3) For the complementary space V, it is useful to take V = {z +
y = 0}. Then we use the variables u = ngﬂQ,v = y — z, so that
dudv = dzdy. The tensor product S(z)T'(y) becomes

v v
Slu- 3|7 [u+3):

and the product S(u)T(u) (if it exists) is just the localization of this
tensor product to {v = 0}. This formulation is useful in applications.
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ExAMPLES. We now give what are probably the most significant
examples for applications. Of these, only the first is considered in
most standard textbook treatments of distributions. The proofs are
routine, although a bit tedious, and we omit them. For details (albeit
based on a somewhat different definition) see Richards-Youn ([1990]).

1. Let S(z) = g(z) be a C*® function which is slowly increas-
ing together with all of its derivatives, and let T'(z) be an arbitrary
tempered distribution. Then the product g(z)T(z), as defined above,
exists. Furthermore, this definition coincides with the traditional one:
(gT, p) = (T, gp) for any test function ¢ € S(RY).

2. Let f(z) and g(z) be slowly increasing continuous functions.
Then the product f(z)g(z), as defined above, exists and equals the
usual product. [Even this simple case is not included in the standard
textbook treatments of multiplication for distributions.]

3. In example 2 above, the function g(z) can be replaced by a
slowly increasing complex measure p(z), i.e., a measure for which
flzl <, Jdu(z)| is a slowly increasing function of r.

4. Let f € LP(R9) and g € L"(RY) with p~1+r~1 =¢~! < 1. Then,
by a well known extension of Holder’s inequality, f(x)g(z) € L*(R?)
and ||£gll: < 1|fllpllglls- Does the product f(z)g(x) exist within dis-
tribution theory? By the traditional definition, no — it makes no sense.
But this case is also covered by the more general definition above.

We turn now to n-fold products. As stated in the Introduction, these
must be defined by a single n-ary operation, and not as a concatenation
of binary operations. This time we pass from R? to R™, and let
z1, - , I denote the g-dimensional vectors corresponding to each of
the components RY in the cartesian product R"™ =R? x --- x RY (n
times).

DEFINITION. The tempered distributions Ti(z), -+, Tn(z) in
S’ (R9) are multiplicable if the tensor product (on R™?)

T (z1)To(z2) - - - Tnlzn)
is localizable to the subspace

U={:L‘1=£U2=---=xn}.
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When that happens, we define the product Tj(z)---Tn(x), with z =
T1 = ..+ = I, to be that localization.

PRrROPOSITION (Commutative Law). Let o be any permutation of
the integers 1,--- ,n. Then the product Ti(z)---T,(x) exists if and
only if the product T,(1) - - To(n) exists, and when they exist they are
the same.

Proof. Simply observe that the tensor product is commutative, and
that our definition is symmetric in the variables z;. ‘ O

Now we come to our main theorem.

THEOREM 4 (Associative Law). Let T1(z),-- ,Tn(z) be multiplic-
able, and suppose that none of the T;(z) is identically zero. Then,
for any r < n, Ti(z),--- ,T.(z) are multiplicable; the (n — r + 1)-fold
product below also exists, and we have:

Ty To=(Ty--Tp) Try1-- T

REMARK. By combining Theorem 4 with the commutative law above,
it is easy to obtain any desired associativity relation, provided that the
n-fold product exists. Thus for example,

Ty Tp=(Ty-Tp) - (Tpy1-Tn).

Proof. The proof is based on Theorems 2 and 3 from Section 2. In
applying these theorems, it is important to remember that the spaces
X; are not required to be orthogonal.

That T, -+ , T, are multiplicable means T3 (z1) - - - Tn(zr) is local-
izable to {#; = --- = z,}. By the “Fubini Theorem”, it follows that
Ty(x1) - - Tn(zy) is localizable to the larger subspace {z; = -+ =
z,, x; arbitrary for ¢ > r}. Now we observe that (unlike the ordinary
product) the tensor product of nonzero distributions is always nonzero.
Hence, by the “Variable Constants Theorem”, Ti(z1) - - - Ty (z,) is lo-
calizable to {z; = -+ = 2, ; = 0 for ¢ > r} in R™. Thus we have
the existence of 17 - - - 1.



380 Ian Richards and Heekyung K. Youn

We now show that (Ty---T}),Ty+1, - , T are multiplicable, and
that their product is what it ought to be. Again using the Variable
Constants Theorem, we see that

*) (Ty - L) (@) Tr41(@r41) - - Tnl@n),

where z = z; = @9 = -+ = &, is the localization of Tj(z1) - - Tn(zn)
to the subspace

{z1 =--+ =z,, z; arbitrary for ¢ > r} in R™.

Now by applying the Fubini Theorem one more time, the localization of

(*) to {x = zy+1 = - - - = =} exists and coincides with the localization
of Th(x1) -+« Tn(zn), to {z1 = -+ =zn}.

By definition, the localization of (*) is (T} - - - T7)(z) Tr41(2) - - - Tn(),
whereas the localization of T1(z1) - Tn () is T1(x) - - Tn(x). O

4. Proof of Theorems 1-3

We now give the proofs which were postponed in Section 2.

Recall that a subset K of S is called bounded if for each of the semi-
norms N, n for S (cf. the proof below), the set of values {No,n(p) :
¢ € K} is bounded.

LEMMA A. Let {¢,} be a bounded family of functions in S. (The
set of indices n need not be countable.) Then there exists a function
6 > 0 in S such that, if we write 7, = £*, then 7, € S for all n, and
the family {1} is bounded.

Proof. For the sake of completeness, we sketch the construction.
The topology on S is determined by the seminorms

Nayw () = 11 +12)™ o' () oo,

or equivalently

Nu(@) = Y 11+ 12V (@)lloo-

la|SN
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Let
My = SUPNN(‘Pn)-

Since {¢n} is bounded in S, My < oo for N =0,1,2,---.
Now to construct . The function 8(z) will have the form 7=, r =
|z|, where o(r) is to be defined below.

Let 7o = 1, and let the sequence of positive reals {r;} be defined by
the conditions

Tit1 2 213,
T g Mz,;.

Let o(r), r 2 0, be a monotone nondecreasing C* function such that
a(0) = 0 and o(r;) = ¢ for all . The spacing of the r; guarantees that,
by standard C* patching procedures, we can construct o(r) so that

1(®) ()] £ Const,, - ~1*! for all a # 0.
Now, as noted above, we let
0z) = [a|~0=.

Clearly § € S. We next show that 7, = £+ € S for all n. Define

N =+ (5|

o0

We need to show that Nag, N < 0o for all a,N,n. We will do the
case a = 0 and leave the computation of the derivatives to the reader.
[Note however that division by 6 is multiplication by % = 72" s0 of
course one takes the derivative of the product, not a quotient. It turns
out that the o = 0 term, which we compute below, is the dominant
one. That is (%)""(5(1;)—) is dominated by (—9-—(1;7) itself.]

To show that N5{ Nn < 0o. Take i = N + 2 in the sequence {r;}
defined above. On the compact disk {|z| £ 7n+2} the functions (1 +
|z|)N (£z) are uniformly bounded. For |z| 2 ryy2, |2| must lie in
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one of the intervals r; < |z| £ 741, 2 2 N + 2. On that interval,

o(r)Si+1,s0 ;9(17) = r?{r) < ¢*+1 QOn the other hand, by definition,

i 2 Mo,
Mai Z (1 + [z])*|en(z)],

so that since |z| 2 r; and N+i+152i -1,

— ; .M2z
1+ |zDNo 1z o) £ 1+ |z VT pp(z)| £ —F—= £ 1,
(14 )0 @)lon(@)] S (1+ 16V lpn(@)] £ e
on the interval r; < |z| £ r;41. This, together with the corresponding
calculations for o # 0, shows that £= € S.

Since the above estimates are uniform in n, it also follows that the
family {£z} is bounded in & O

By almost identical arguments one can prove:

LEMMA B. Let ¢, € S and ¢, — 0 in S. Then there exists a
function @ > 0 in S such that

= ¥n

Tn 7 €cSandm, —0inS.

LEMMA C. Let RI = U +V as above. Then the function 6(x)
above can be replaced by a function of the form 61 (u)82(v), 61 € S(U),
6, € S(V). Thus instead of w,(z) = 8(x)Tn(x), we have @,(u,v) =
61 (u)02(v)7n(u, v).

Finally we observe that the space S is symmetrical under the Fourier
transform. [In fact, that is our main reason for using S.] Hence the
products in the above lemmas can be replaced by convolutions. That
is what will happen in the proofs which follow.

We turn now to the proofs of Theorems 1-3. We state Theorem 1
in a slightly stronger form which will be useful.
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THEOREM 1*. Let R? = X; + X5 + X3 be a decomposition of
R into three complementary subspaces, and let U = X; + X,. Let
T(x1,z2,z3) be a tempered distribution on RY. Suppose that for all
test functions in S(U) of the form ¢y (z1)p2(x2), Ty, 4, (T1, T2, T3) is
a slowly increasing continuous function. Then the same thing holds
for all test functions ¥(z1,xz2) € S(U), ie., T is localizable to U.
The localization is a distribution. Finally, this distribution is uniquely
determined by its action on the special test functions ¢1(x1)p2(z2).

Proof. Let ¥,(z1,z2) be any sequence of test functions approaching
zero in S(U). We use Lemmas A-C above. Furthermore, since the
space S(U) is symmetric under the Fourier transform, the products in
Lemmas A-C can be replaced by convolutions. Thus there exist test
functions 6;(z1) and 62(z2) and a sequence 7,(z1,z2) € S(U) such
that

\I/n(l'l, iL‘g) = [91 (.’1:1)92 (IL‘Q)] % Tn(.’El, .'132)
and
Tn(wl,xz) — 0 in S(U)

Then

Ty, (x1,22,23)

= T(x1,x2,23) * Yn(—21, —72)0(x3)

= T(x1, T2, 3) * [[01(—21)02(—x2) * Tn(—21, —72)]d(x3)]

= T(z1,x2,23) * [(61(—x1)02(—22)8(23)] * [Tn(—z1, —22)d(z3)],

since the delta function is an identity under convolution. Furthermore,
except for T', all of the terms in the triple convolution above are rapidly
decreasing, so the associative law for convolution holds. Thus we arrive
at

Ty, (21,72, 23) = Tp,0,(T1, T2, Z3) * Tn(—21, —22)d(x3).

By hypothesis, Tp,9, is already a slowly increasing continuous func-
tion. Since 7,(—1, —x2)d(z3) is rapidly decreasing, Ty is also con-
tinuous and slowly increasing. Thus T is localizable to U. To show
that (T'(x1,2,0), ¥p(z1,z2)) — O

<T(.’I)1, T2, 0), qln) - T\Iln (0, 0, 0)
= [T9192 (ml’ z2, 1‘3) * Tn(“xl, —332)5(233)] (0, 0, 0)
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Since we already know that Tp, ¢, is continuous and slowly increasing,
and since 7, — 0 in S(U), it follows that [(T,s,) * 7,6](0,0,0) — 0.

Finally, since the linear span of all products ¢;(x1)p2(z2) is dense
in S(U), the action of T(z1,z2,0) on these products determines the
distribution uniquely. ]

Proof of Theorem 2 (“Fubini”). Recall that we have R? = X; + X+
X3, with T'(z1, 22, z3) localizable to X;. We want to show, among other
things, that this implies a localization to the larger space X; + Xo. By
Theorem 1*, in dealing with S(X; + X32), it suffices to consider only
test functions of the form ¢1(z1)p2(z2). Recall that by definition

(1) Ty, (x1, 2, x3) = T(z1, T2, 23) * p1(—21)0(x2)0(23),
(2)  Tpypp(®1, 22, 23) = T(z1, T2, 23) * P1(—T1)p2(—22)d(z3).

Now since the delta function is an identity under convolution, (2) is
equivalent to

(3) T(z1,x2,3) * p1(—21)8(z2)d(x3) * §(z1)p2(—x2)d(z3).

Except for T, all of the terms in this convolution are rapidly decreasing,
so the associative law for convolution holds. The first two terms in (3)
coincide with (1), and thus we have

(4) Tprp, = [Twl]cpz-

Since T is localizable to X1, T, is continuous and slowly increasing,
and hence so is the convolution [Ty, ],, given by (3). Since T,,,, =
[T, ]y,, this implies that T is localizable to X7 + X».

REMARK. Here it is essential that, in the definition of localization,
T, (u,v) is continuous at all points (u,v) — and not just at (0,0). For
convolutions do not leave the origin invariant.

Now let S(z1,z2) = T'(z1,z2,0). We want to show that
(*) S<P1(x1’$2) =T¢1(1‘1,1‘2,0).

[This is not self evident, since it involves a Fubini - like interchange of
the restriction to X; + X and the 1 (z1) — operation.] Apply both
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of the distributions in (*) to an arbitrary test function &(z1,z2) €
S(X1 + Xo):

(Sp, (1, T2), (21, T2))
= (S(z1, 72) * p1(~21)8(22), € (21, T2))
= (S(z1,%2), p1(®1)d(x2) * &(x1, 22))

which by definition of the localization S is
(5)
[T (21, %2, 23) * [p1(—21)d(x2) * {(—z1, —22)]6(25)](0,0,0)

= [T(z1,z2,23) * [p1(—21)d(z2)d(x3) * {(—z1, —22)d(23)]](0, 0, 0).

On the other hand, Ty, (z1,z2,23) can be viewed either as a slowly
increasing continuous function or as a distribution. We have
(6)

(Ty, (z1,22,0), (1, T2))

= ([T (x1, 22, x3) * p1(—21)8(x2)d(x3)] (1, T2, 0), £(21, T2))

= [T (21,22, 73) * p1(—21)8(22)d(23)] * {(—21, —2)8(23)](0,0,0).

Now by the associativity of convolution (5) equals (6). This proves (*).

Once we have (*), everything is easy. Since T, is continuous and
slowly increasing, so is S,,. Hence S is localizable to X;. Finally by
(*), Sy, (0,0) = T, (0,0,0), which means by definition that

(S(x1,0),01(21)) = {T'(21,0,0), p1(z1)). 0

Proof of Theorem 3 (Variable Constants). Again we have R? =
X1+ X2+ X3, and we are considering the tensor product T(z)S(z2, x3)
with T # 0. Again it suffices to consider only test functions of the form
@1(z1)p2(z2). Since T # 0, there exists some ¢, with (T, 1) # 0,
which implies that T,, # 0. Recall that by definition

(1) Sy (T2, 23) = S(x2,23) * p2(~x2)d(z3),

(2)
(TS)gy5 (21, T2, 3) = T(21)S(22, 73) * P1(—T1)p2(—x2)8(23),
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and since convolution involving independent variables commutes with
the tensor product, (2) is equivalent to

(3) (T(z1) * p1(—21))(S (@2, T3) * P2(—22)6(x3)).
In other words,
(4) (TS)<P1<P2 = (T<P1 )(S<P2)

Now T, (z1) is always a continuous slowly increasing function (since
¢1(x1) involves the whole space X1), and for certain ¢1,T,, # 0. The
formula (4) written out in full becomes

(5) (Ts)wltpz(xlax%xli) = T<P1 (1’1)S¢2($2,x3),

and now it is obvious that the continuity of (T'S)y, 4, is equivalent to
the continuity of Sy,. Also (T'S)p, 4, (0,0,0) = Ty, (0)Se,(0,0) which
by definition means that

(T(21)S(22,23))|ss=0 = T(21)(S (22, £3)|zs=0)- O

5. Convolution

We now indicate briefly how these procedures lead to a general defi-
nition of convolution. [Of course we have used convolutions extensively
in this paper — but only in the classical case where all but one of the
distributions are rapidly decreasing.] The idea, essentially, is to take
the Fourier transform of our definition for multiplication.

Let R? = U 4+ V as above. Let U = V+ and V = U'. Adjust the
dual variables 1, so that the inner product

(u,v) - (4,0) =u-a+v-9.
Then the Fourier transform of the tensor product

[S(w)T () = $(@)T(9)-
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DEFINITION. A tempered distribution T'(z) in S’(RY) is integrable
if its Fourier transform T is a slowly increasing continuous function.
Then we define the integral of T by

/ /R T(@)dz = 7(0).

Corresponding to localization we have:

DEFINITION. A tempered distribution T'(u, v) is partially integrable
over V if, for all p(u) € S(U), the product ¢(u)T(u,v) is integrable
over RY. In that case we define the partial integral over V by

T(u,v)dv, p(u) ) = o(u)T(u,v)dvdu.
1% R¢

To define convolution on RY, we again form the cartesian product
R2? = R? x RY, and then specify that:

DEFINITION. Two tempered distributions S(z) and T'(z) in S'(R9)
are convolvable if, for all p(z) € S(RY), the product

p(z+y)S(x)T(y)

is integrable over R%9. In that case we define the convolution S % T by
(S+D@).v@) = [ [ o+ nS@Te)ds
q

Now it is easy to check that these definitions of partial integra-
tion/convolution are simply the duals under the Fourier transform
of the definitions of localization/multiplication given above. For in-
stance for convolution: The product ST naturally led to the sub-
spaces U = {¢ = y} and V = {z +y = 0}, and to the variables

~

U = Lzﬂl, © = y — z. Then if we define u,v so as to preserve inner
products, we arrive at u =z +y, v = @ This explains the factor
¢(u) = ¢(z +y) in the formulas above.

Since we have complete duality under the Fourier transform, we have
the trivial but important
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THEOREM. Two distributions S(z) and T'(z) in §'(R9) are convolv-
able if and only if their Fourier transforms are multiplicable. In that
case .

[S*TT=ST.

REMARKS CONCERNING OTHER DEFINITIONS. Shiraishi ([1959]),
Horvath ([1974]), and others have proposed a definition of convolution
which is very similar in spirit to the above, but which is less general.
Essentially, these authors define a distribution T'(z) to be integrable
only if T has a certain explicit structure: T is required to be a finite
sum of derivatives of bounded complex measures.

[Clearly if T has the Shiraishi/Horvéath form, then T is continuous
and slowly increasing — the converse is false.]

In fact, the Shiraishi/Horvath definition is extremely natural, and
it suffices for all applications. More precisely, it suffices for all ap-
plications which involve only convolution. Duality under the Fourier
transform is lost.
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