THE BEREZIN OPERATOR ON THE INVARIANT L^p SPACE IN THE BALL

JAESUNG LEE

ABSTRACT. We show various properties of the Berezin operator T and its iteration T^k on the L^p space of the invariant measure τ on the complex unit ball B by exhibiting differences between the case of 1 and <math>p = 1, ∞ under the infinite iteration of T or the summation of iterations.

I. Introduction

For a positive integer n, let

$$B = \{ z \in \mathbf{C}^n \mid |z| < 1 \}$$

and ν denote the Lebesgue volume measure on ${\bf C}^n$ normalized so that $\nu(B)=1$, then for each $a\in B$ we have the automorphism of B

$$\varphi_a(z) = \frac{1 - P_z - (1 - |a|^2)^{1/2} Q_z}{1 - \langle z, a \rangle}$$

where

$$P_z = \frac{\langle z, a \rangle a}{|a|^2}$$
, $Q_z = z - P_z$, $\langle z, a \rangle = \sum_{i=1}^n z_i \overline{a_i}$.

For $f \in L^1(B, \nu)$, we can define the Berezin transform

(1)
$$Tf(z) = \int_{B} f \circ \varphi_{z} \, d\nu.$$

Received May 30, 1999.

1991 Mathematics Subject Classification: 31B05, 30C05.

Key words and phrases: Berezin Operator, Berezin transform, invariant measure, invariant Laplacian.

Research partially supported by KIAS.

From the fact that the real Jacobian of φ_z is

$$(J_R \varphi_z)(w) = \frac{(1-|z|^2)^{n+1}}{|1-\langle z,w\rangle|^{2n+2}}$$

we get another formula of Tf as

(2)
$$Tf(z) = \int_{B} f(w) \frac{(1-|z|^{2})^{n+1}}{|1-\langle z,w\rangle|^{2n+2}} d\nu(w).$$

The invariant Laplacian $\tilde{\Delta}$ is defined for $f \in C^2(B)$ by

$$(\tilde{\Delta}f)(z) = \Delta(f \circ \varphi_z)(0)$$

where Δ is the ordinary Laplacian. It commutes with every $\psi \in Aut(B)$

$$(\tilde{\Delta}f) \circ \psi = \tilde{\Delta}(f \circ \psi).$$

A function f on B is called M-harmonic if $\tilde{\Delta}f=0$. τ is the invariant measure on B defined by

$$d au(z) = (1-|z|^2)^{-n-1} d
u(z)$$
 and satisfies $\int_B f d au = \int_B f \circ \psi d au$

for every $f \in L^1(\tau)$ and $\psi \in Aut(B)$.

In the paper [3], the author exhibited properties of the Berezin operator T and its iteration T^k on $L^{\infty}(B)$ by using the fact that $L^{\infty}(B)$ is the dual of $L^1(\tau)$ on which T is a contradiction, moreover the spectrum of T on the radial subspace of $L^1(\tau)$ is found explicitly from theories of the commutative Banach algebra.

Here, we extend results of [3] so that we find properties of

$$Tf$$
, $T^k f$, $\sum_{k=0}^{\infty} T^k f$

when f belongs to $L^p(\tau)$ for 1 , some of which turns out to be quite different from the case of <math>p = 1 or $p = \infty$.

Then we compare and combine our results with those of [3] to find general properties of T on the space $L^p(\tau)$ for $1 \leq p \leq \infty$.

II. Properties and Results

We will find various properties of Tf for functions in $L^p(\tau)$ when 1 , then compare to [3] which deals with <math>p = 1 or $p = \infty$. We start from the basic and easy lemma of [3] which enables us to consider the iteration of T on $L^p(\tau)$.

LEMMA 1 ([3]). For $1 \leq p \leq \infty$, $\frac{1}{p} + \frac{1}{q} = 1$, T is a linear contraction on $L^p(\tau)$. Moreover, for $f \in L^p(\tau)$ and $g \in L^q(\tau)$ we have

$$\int_{B} (Tf)g \ d\tau = \int_{B} fTg \ d\tau.$$

(Note: T is not a bounded operator on $L^1(\nu)$ but using a technique developed by [2], one can show that T is bounded on $L^p(\nu)$ for p > 1) Also we frequently use the L^{∞} part of the Main Theorem of [1], which states as follows.

PROPOSITION 2 ([1]). If $f \in L^{\infty}(B)$ satisfies Tf = f, then f is M-harmonic.

We first show that for $1 , the behaviour of <math>f \in L^p(\tau)$ under the infinite iteration of T differs from that of $L^{\infty}(B)$ or $L^1(\tau)$. Proposition 3.6 of [3] showed that if $f \in L^1(\tau)$ is radial then

$$\lim_{k\to\infty} \parallel T^k f \parallel_1 = \left| \int_B f \ d\tau \right|.$$

Next proposition says that when 1 , things are much simpler.

PROPOSITION 3. For $1 , if <math>f \in L^p(\tau)$ then

$$\lim_{k\to\infty} \parallel T^k f \parallel_p = 0.$$

Proof. Since T is a positive linear contraction on $L^p(\tau)$, by the standard approximation, it is enough to prove the proposition when f is a characteristic function χ_K for come compact subset K of B. First, we'll show that

(3)
$$\lim_{k \to \infty} \| T^k \chi_K \|_{\infty} = 0.$$

Pick 0 < r < 1 such that $K \subset rB$. Then define $u : [0,1] \to \mathbf{R}$ by

$$u(t) = -1 \quad \text{for } 0 \le t \le r$$

$$u(t) = \frac{t-1}{1-r} \quad \text{for } r \le t \le 1$$

then v(z) = u(|z|) is subharmonic in B, which implies that $v \circ \varphi_a$ is subharmonic for each $a \in B$. Thus from the definition (1) of Tv and the submean value property, we get $Tv \geq v$. Since T is a positive operator, $\{T^kv\}$ is increasing and uniformly bounded on B.

Hence $\lim T^k v = g$ exists and satisfies Tg = g.

Since g is bounded, Proposition 2 forces g to be M-harmonic. So $g \equiv 0$ since g = 0 on ∂B .

By Dini's theorem, therefore, $\{T^k v\}$ converges uniformly to zero and this makes $\{T^k \chi_K\}$ also converge uniformly to zero because

$$T^k v \leq -T^k \chi_K \leq 0.$$

This proves (3).

Next let $p = 1 + \alpha$ for some $\alpha > 0$, and then for a given $\epsilon > 0$, define

$$A_k = \{ z \in B \mid T^k \chi_K > \epsilon \}.$$

then from (3), A_k is empty for all k sufficiently large. Moreover, since

$$||T^k\chi_k||_{\infty} \leq 1$$

we have

$$\parallel T^k \chi_K \parallel_p^p = \int_B \mid T^k \chi_K \mid^p d\tau$$

$$= \int_{A_k} (T^k \chi_K) (T^k \chi_K)^\alpha d\tau + \int_{B/A_k} (T^k \chi_K) (T^k \chi_K)^\alpha d\tau$$

$$\leq \tau(A_k) + \tau(K) \epsilon^\alpha$$

Therefore, we complete the proof by taking $k \to \infty$.

Even though $T^k f$ generally does not converge to zero in norm when $f \in L^1(\tau)$. Next proposition tells that it converges pointwise to zero in B.

Proposition 3. If $f \in L^1(\tau)$, then

$$\sum_{k=0}^{\infty} \mid T^k f(z) \mid < \infty \quad \text{for every } z \in B$$

Proof. First, let's observe that for $u(z) = |z|^2 - 1$, we get Tu > u. To show this we have to calculate directly using 1.4.9 and 1.4.10 of [4].

$$Tu(z)$$

$$= -(1 - |z|^2)^{n+1} \int_B \frac{1 - |w|^2}{|1 - \langle z, w \rangle|^{2n+2}} d\nu(w)$$

$$= -(1 - |z|^2)^{n+1} 2n \int_0^1 (1 - r^2) \int_S \left| \sum_{k=0}^\infty \frac{(k+n)!}{k!n!} (\langle z, r\xi \rangle)^k \right| d\sigma(\xi) r^{2n+1} dr$$
(Here σ is the rotation-invariant probability measure on $S = \partial B$)
$$= -(1 - |z|^2)^{n+1} 2n \int_0^1 (1 - r^2) \frac{1}{n!} \sum_{k=0}^\infty \frac{(k+n)!(k+n)}{k!n} |z|^{2k} r^{2n+2k-1} dr$$

$$= -(1 - |z|^2)^{n+1} \sum_{k=0}^\infty \frac{(k+n)!}{k!n!(k+n+1)} |z|^{2k}$$

$$> -(1 - |z|^2)^{n+1} \sum_{k=0}^\infty \frac{(k+n-1)!}{k!(n-1)!(k+n+1)} |z|^{2k}$$

$$= |z|^2 - 1 = u(z)$$

Moreover u is a uniform limit of a sequence of functions in $C_c(B)$ and if $v \in C_c(B)$, then we can show exactly the same way as the proof of (3) of Proposition 3 that

$$\lim_{k\to\infty} \parallel T^k v \parallel_{\infty} = 0.$$

Hence we get

$$\lim_{k \to \infty} \parallel T^k u \parallel_{\infty} = 0.$$

Thus if we define g = Tu - u, then g > 0 and $||g||_{\infty} \le 2$, moreover

$$\sum_{k=0}^{m} T^k g$$

converges uniformly to -u as $m \to \infty$. Combining this with Lemma 1, we get

$$\int_{B} \left(\sum_{k=0}^{\infty} T^{k} |f| \right) g d\tau = \int_{B} |f| \sum_{k=0}^{\infty} T^{k} g d\tau$$

$$= \int_{B} |f| (-u) d\tau$$

$$\leq ||f||_{1} ||u||_{\infty} < \infty.$$

Since g > 0, the proof is complete.

[3] showed that when p=1 or $p=\infty$, the space $(I-T)L^p(\tau)$ is not dense in $L^p(\tau)$ by showing that every $f\in \overline{(I-T)L^p(\tau)}$ satisfies

$$\lim_{k \to \infty} || T^k f ||_p = 0 \quad \text{for} \quad p = 1, \ \infty.$$

However next proposition shows that for $1 , <math>(I - T)L^p(\tau)$ is dense in $L^p(\tau)$.

Proposition 5. If
$$1 , then $\overline{(I-T)L^p(\tau)} = L^p(\tau)$.$$

Proof. Let L be a bounded linear functional on $L^p(\tau)$, then there is a $g \in L^q(\tau)$ $(\frac{1}{p} + \frac{1}{q} = 1)$ such that

$$L(f) = \int_{\mathcal{B}} f g d\tau$$
 for all $f \in L^p(\tau)$.

Assume that L(h) = 0 for all $h \in (I - T)L^p(\tau)$. Then

$$\int_{B} (f - Tf)g \ d\tau = 0 \quad \text{for every} \quad f \in L^{p}(\tau)$$

which means, by Lemma 1

$$\int_{B} f(g - Tg) d\tau = 0 \text{ for every } f \in L^{p}(\tau).$$

Thus g = Tg. However, for every $z \in B$

$$| g(z) |$$

$$= | Tg(z) |$$

$$\le \int_{B} |g(w)| \frac{(1-|z|^{2})^{n+1}}{|1-\langle z,w\rangle|^{2n+2}} d\nu(w)$$

$$= (1-|z|^{2})^{n+1} \int_{B} |g(w)| \frac{(1-|w|^{2})^{n+1}}{|1-\langle z,w\rangle|^{2n+2}} d\tau(w)$$

$$\le (1-|z|^{2})^{n+1} \left(\int_{B} |g|^{q} d\tau \right)^{\frac{1}{q}} \left(\int_{B} \frac{(1-|w|^{2})^{pn+p}(1-|w|^{2})^{-n-1}}{|1-\langle z,w\rangle|^{2np+2p}} d\nu(w) \right)^{\frac{1}{p}}$$

$$\le (1-|z|^{2})^{n+1} ||g||_{q} c(1-|z|^{2})^{-n-1}$$
for some $c > 0$ by 1.4.10 of [4]
$$= c ||g||_{q} .$$

Thus g is bounded and Tg = g, which means that g is M-harmonic (Proposition 2). In view of 4.2.3 of [4], the radialization of such g is a constant but nonzero constant can't belong to $L^q(\tau)$, which forces g to be the constant zero.

Therefore L(f) = 0 for all $f \in L^p(\tau)$.

From Hahn-Banach theorem, we conclude that $(I-T)L^p(\tau)$ is dense in $L^p(\tau)$. This ends the proof.

If we combine the Proposition 5 with the Theorem 3.7, corollary 2.3 of [3] we get the following corollary.

COROLLARY 6. (a) For
$$1 \leq p < \infty$$
,
$$\overline{(I-T)L^p(\tau)} \ = \ \left\{ \ f \in L^p(\tau) \mid \left\{ \ T^k f \ \right\} \ \text{converges} \ \right\}$$
 (b) For $1 \leq p \leq \infty$,
$$\overline{(I-T)L^p(\tau)} \ = \ \left\{ \ f \in L^p(\tau) \mid \left\{ \ T^k f \ \right\} \ \text{converges} \ \ \text{to} \ \ 0 \ \right\}.$$

We have characterize the closure of $(I-T)L^p(\tau)$ for $1 \le p \le \infty$ by using the iteration T^k on $L^p(\tau)$. Moreover we can also characterize the space $(I-T)L^p(\tau)$ using the iteration T^k on $L^p(\tau)$ when 1 .

Proposition 7. For 1

$$(I-T)L^p(\tau) \ = \ \bigg\{ \ f \in L^p(\tau) \ \bigg| \ \limsup_{m \to \infty} \ \| \ \sum_0^m \ T^k f \ \|_p \ < \ \infty \ \bigg\}.$$

Proof. Let f = g - Tg for some $g \in L^p(\tau)$ then

$$\left\| \sum_{0}^{m} T^{k} f \right\|_{p} = \| g - T^{m+1} g \|_{p} \le 2 \|g\|_{p}.$$

Hence

$$(I-T)L^p \subset \left\{ f \in L^p \mid \limsup_m \left\| \sum_{0}^m T^k f \right\|_p < \infty \right\}.$$

on the other hand, for $1 , pick <math>f \in L^p(\tau)$ such that

$$\limsup_{m} \left\| \sum_{0}^{m} T^{k} f \right\|_{p} = M < \infty.$$

Define

$$f_k = \sum_{j=0}^{\kappa} T^j f$$

then $f_k - T f_k = f - T^{k+1} f$.

hence if we define

$$F_m = \frac{1}{m+1} \sum_{k=0}^m f_k$$

then $||F_m||_{P} \leq M$ and

$$(I-T)F_m = \frac{1}{m+1} \sum_{k=0}^{m} (I-T)f_k$$
$$= \frac{1}{m+1} \sum_{k=0}^{m} (f-T^{k+1}f)$$
$$= f - \frac{1}{m+1} \sum_{k=0}^{m} T^{k+1}f.$$

Hence

$$\|(I-T)F_m - f\|_p \le \frac{1}{m+1}M \to 0 \text{ as } m \to \infty.$$

Since $\{F_m\}$ is norm bounded , it has a subspace $\{F_{m_j}\}$ that converges weak * to some $g \in L^p(\tau)$ and the operator (I-T) is self-adjoint (Lemma 1) in $L^q(\tau)$ which makes $(I-T)F_{m_j}$ converge to (I-T)g weak * in $L^p(\tau)$. Since $(I-T)F_m$ norm converges to f, f is the unique weak * limit of $(I-T)F_m$.

Therefore

$$f = (I - T)g \in (I - T)L^p(\tau)$$

This completes the proof.

[3] showed that if $f \in L^1(\tau)$ satisfies $Tf = \mu f$ for some $\mu \in \mathbf{C}$ with $|\mu| = 1$, then $f \equiv 0$. Next proposition is an extension of it.

PROPOSITION 8. Let $1 \le p \le 2$. If $f \in L^p(\tau)$ satisfies $Tf = \mu f$ for some $\mu \in \mathbb{C}$, then $f \equiv 0$.

Proof. It is obvious when μ is zero, so assume that $\mu \neq 0$. Observe that when $f \in L^p(\tau)$ satisfies $Tf = \mu f$ then

(i) When p = 1, for every $z \in B$

$$| \mu f(z) | = | Tf(z) | \le \sup_{z \in B} \left(\frac{(1 - |z|^2) (1 - |w|^2)}{|1 - \langle z, w \rangle^2} \right)^{n+1} ||f||_1$$

$$= ||f||_1$$

(ii) When 1

$$\begin{array}{lcl} \mid \mu f(z) \mid & \leq & (1-|z|^2)^{n+1} \int_{B} |f(w)| \left(\frac{1-|w|^2}{|1-\langle z,w\rangle|^2} \right)^{n+1} d\tau(w) \\ & \leq & c \|f\|_p \quad \text{(for some c just as the proof of Proposition 5)} \end{array}$$

Thus all such f belongs to $L^{\infty}(B)$.

For $1 \leq p \leq \infty$ and $\mu \in \mathbf{C}$, we define

$$M_{p,\mu} = \{ f \in L^p(\tau) \mid Tf = \mu f \}.$$

First we will characterize the space $M_{\infty,\mu}$. The spectrum of T on $L^{\infty}(B)$ is found in [3] (Theorem 2.1), which is

$$E = \left\{ \left. \frac{\Gamma(z+1)\Gamma(n+1-z)}{\Gamma(n+1)} \; \middle| \; 0 \; \leq \; \operatorname{Re} \; z \; \leq \; n \; \right\}.$$

In view of this if $\mu \notin E$, then $M_{\infty,\mu} = \{0\}$. Furthermore every $\mu \in E$ is a point spectrum (an eigenvalue) of T on $L^{\infty}(B)$. Indeed if $\mu \in E$

and β with $0 < Re \beta < n$ satisfies

$$\frac{\Gamma(\beta+1)\ \Gamma(n+1-\beta)}{\Gamma(n+1)}\ =\ \mu$$

then we can see that the function

$$g_{\alpha}(z) = \int_{S} \left(\frac{1 - |z|^2}{|1 - \langle z, \xi \rangle|^2} \right)^{\beta} d\sigma(\xi)$$

satisfies $Tg = \mu g$.

However the Main Theorm of [1] has the precise characterization of the space $M_{1,1}$, which is;

 $\tilde{\Delta}$ is a bounded linear operator on the Banach space $M_{1,1}$ and the finite set E_1 defined by

$$E_1 = \left\{ \begin{array}{l} \lambda \in \mathbf{C} \mid \lambda = -4\beta(n-\beta), \ \frac{\Gamma(\beta+1)\Gamma(n+1-\beta)}{\Gamma(n+1)} \ = \ 1, \\ -1 < Re \ \beta < \ n+1 \ \right\} \end{array}$$

is the set of all eigenvalues of $\tilde{\Delta}$ on $M_{1,1}$. Indeed, if $E_1 = \{ \lambda_1, \dots, \lambda_N \}$ then

$$M_{1,1} = X_{\lambda_1} \oplus \cdots \oplus X_{\lambda_N}$$

where

$$X_{\lambda_i} = \{ f \in L^1(B) \mid \tilde{\Delta}f = \lambda_i f \}.$$

Now by the identically the same proof as that of the Main Theorem of [1], we can also get the following characterization of the space $M_{\infty,\mu}$ such as;

For each $\mu \in E, \tilde{\Delta}$ is a bounded linear operator on the Banach Space $M_{\infty,\mu}$ and

$$E_{\mu} = \{ \lambda \in \mathbf{C} \mid \lambda = -4\beta(n-\beta), \frac{\Gamma(\beta+1)\Gamma(n+1-\beta)}{\Gamma(n+1)} = \mu, \\ 0 \le Re \ \beta \le n \}$$

is the set of all eigenvalues of $\tilde{\Delta}$ on $M_{\infty,\mu}$ and is always finite. Let

$$E_{\mu} = \{ \lambda_1, \cdots, \lambda_m \}$$

and

$$Q(z) = \prod_{i=1}^{m} (z - \lambda_i)$$

then $Q(\tilde{\Delta}) = 0$ on $M_{\infty,\mu}$.

Thus by Lemma 4.1 of [1], we have

$$M_{\infty,\mu} = X_{\lambda_1} \oplus \cdots \oplus X_{\lambda_m}$$

where

$$X_{\lambda_i} = \{ f \in L^{\infty}(B) \mid \tilde{\Delta}f = \lambda_i f \}.$$

Since we've showed that

$$M_{p,\mu} = M_{\infty,\mu} \cap L^p(\tau)$$

to prove the proposition it is enough to show that

if $1 \leq p \leq 2, f \in L^p(\tau)$ and $\tilde{\Delta}f = \lambda f$ for some $\lambda \in \mathbb{C}$, then f is identically zero.

The radial functions in X_{λ} are known to be the constant multiple of

$$g_{\alpha}(z) = \int_{S} \frac{(1-|z|^2)^{n\alpha}}{|1-\langle z,\xi\rangle|^{2n\alpha}} d\sigma(\xi)$$

where $\lambda = -4n^2\alpha(1-\alpha)$ and the function g_{α} satisfies $g_{\alpha} = g_{1-\alpha}$ (see 4.2.3 of [4]).

Also note that the radialization carries $X_{\lambda} \cap L^{p}(\tau)$ into itself and if $\alpha = s + it(s, t \in \mathbf{R})$, then $g_{\alpha} \in L^{p}(\tau)$ if and only if $g_{s} \in L^{p}(\tau)$.

However by direct calculation using 1.4.10 of [4], we get that when $1 \le p \le 2$, g_s belongs to $L^p(\tau)$ at no $s \in \mathbf{R}$, which completes the proof of the proposition.

(Note : When p>2, the function $g_{\frac{1}{2}}$ belongs to $L^p(\tau)$ and satisfies $Tg_{\frac{1}{2}} = \mu g_{\frac{1}{2}}$ where

$$\mu = \frac{\Gamma(\frac{n+1}{2})}{\gamma(n+1)}.$$

References

- P. Ahern, M. Flores and W. Rudin, An invariant volume mean value property, J. Funct. Anal 111 (1993), 380-397.
- [2] F. Forelli and W. Rudin, Projection on spaces of holomorphic functions in balls, Indiana U. Math. Journal 24 (1974), 593-602.

- [3] J. Lee, Properties of the Berezin transform of bounded functions, Bull. Austral. Math. Soc 59 (1999), 21-31.
- [4] W. Rudin, Function Theory in the unit Ball of \mathbb{C}^n , Springer-Verlag, 1980.

Korea Institute of Advanced Study Department of Mathematics Seoul 130-012, Korea *E-mail*: jalee@kias.re.kr