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THE BEREZIN OPERATOR ON THE
INVARIANT I* SPACE IN THE BALL

JAESUNG LEE

ApsTRACT. We show various properties of the Berezin operator T
and its iteration T* on the L? space of the invariant measure 7 on
the complex unit ball B by exhibiting differences between the case
of 1 < p < ocoandp=1, counder the infinite iteration of T or the
summation of iterations.

I. Introduction

For a positive integer n, let
B={zecC"||z|<1}

and v denote the Lebesgue volume measure on C” normalized so that
v(B) = 1, then for each a € B we have the automorphism of B

1- P, — (1 |a]?)¥2Q,
1- <Z, a’>

wo(z) =

where

kI

{z,a)a —
-Pz = <_l;z‘|2>_, Qz = Z—Pz, (Z,CL> = Zziai.
=1

For f € L'(B,v), we can define the Berezin transform
(1) T4 = [ fop.dv
B
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From the fact that the real Jacobian of ¢, is

1— 2yn+1
(Jrp:)(w) = Il(ﬁ%m
we get another formula of T'f as
= n+1
(2) Z) = / f ll_ | |;|2n+2 dI/(’LU)

The invariant Laplacian A is defined for f € C*(B) by
(Af)(=) = A(fow:)(0)
where A is the ordinary Laplacian. It commutes with every ¢ € Aut(B)
(Af) o ¥ = A(for).

A function f on B is called M-harmonic if Af =
T is the invariant measure on B defined by

dr(z) = (1—|z*)™ ! dv(z) and satisfies / fdr = / foudr
B B

for every f € L'(7) and ¢ € Aut(B).

In the paper [3], the author exhibited properties of the Berezin operator
T and its iteration T* on L®(B) by using the fact that L>(B) is the
dual of L}(7) on which T is a contradiction, moreover the spectrum of
T on the radial subspace of L'(7) is found explicitly from theories of the
commutative Banach algebra.

Here, we extend results of [3] so that we find properties of

Tf, T, Y TFf
k=0

when f belongs to LP(7) for 1 < p < o0, some of which turns out to
be quite different from the case of p =1 or p = co.

Then we compare and combine our results with those of [3] to find general
properties of T on the space L(1) for 1 < p < 0.
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II. Properties and Results

We will find various properties of Tf for functions in LP(r) when
1 < p < o0, then compare to [3] which deals with p =1 or p = co.
We start from the basic and easy lemma of [3] which enables us to con-
sider the iteration of T on LP(7).

LemMMA 1 ([3]). Forl < p < o0, % + % = 1,T is a linear
contraction on LP(1). Moreover, for f € LP(7) and g € L(7) we have

/B(Tf)g dr = /B fTg dr.

(Note: T is not a bounded operator on L!(v) but using a technique

developed by [2], one can show that T is bounded on L?(v) for p > 1)
Also we frequently use the L™ part of the Main Theorem of [1], which

states as follows.

PRrOPOSITION 2 ([1]). If f € L*(B) satisfies Tf = f, then f is
M-harmonic.

We first show that for 1 < p < oo, the behaviour of f & L)
under the infinite iteration of 1 differs from that of L®(B) or L(7).
Proposition 3.6 of [3] showed that if f € L(r) is radial then

(
lim || THf |, — ‘ / fdr
k—oo B

Next proposition says that when 1 < p < oo, things are much simpler.

PROPOSITION 3. For 1 < p < oo, if f € LP(r) then
. k _
lim || T°f [, = 0.

Proof. Since T is a positive linear contraction on L?(7), by the stan-
dard approximation, it is enough to prove the proposition when f is a
characteristic function yx for come compact subset K of B.

First, we’ll show that

3) lim || T oo = 0.
— 00
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Pick 0 < r < 1 such that K ¢ rB. Then define u: [0,1] — R by

u(t) = =1 for 0 <t <r
t—1
u(t) = - for r <t <1
then v(2) = u(|z|) is subharmonic in B, which implies that v o ¢, is
subharmonic for each @ € B. Thus from the definition (1) of Tv and
the submean value property, we get Tv > v. Since T is a positive
operator, {T*v} is increasing and uniformly bounded on B.
Hence lim T*v = g exists and satisfies Tg = g.
Since g is bounded, Proposition 2 forces g to be M-harmonic. So g =0
since g =0 on 9B.
By Dini’s theorem, therefore, { T%v } converges uniformly to zero and
this makes { T*xx } also converge uniformly to zero because

T' < —TFxg < 0.
This proves (3).

Next let p = 1 + o for some & > 0, and then for a given € > 0, de-
fine

A, = {z€B|Thyx > €}.
then from (3), Aj; is empty for all k£ sufficiently large.
Moreover, since

I Tk fleo < 1
we have
1Tl = [ 1T ar
B
= [ @0 Tt ar+ [ () (P ar
Ay B/Ay
< 1(Ax) + T(K)e*
Therefore, we complete the proof by taking & — oo. O

Even though T*f generally does not converge to zero in norm when
f € L}(r). Next proposition tells that it converges pointwise to zero in

B
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PROPOSITION 3. If f € L!(7), then

x>

Z | T*f(z) | < oo for everyz€ B
5=0

Proof. First, let’s observe that for u(z) = |22 — 1, we get Tu > u.
'To show this we have to calculate directly using 1.4.9 and 1.4.10 of [4].

Tu(z)

1
k :
= _(1 _ lzl2)n+12n/ (1 . TZ)/ { Z ( k':' 7'7’) ((z,’rf))k dO’(f)T‘Zﬂ+1d7‘
0 slizy &
(Here o is the rotation-invariant probability measure on S = §B)

1 o] '
= —(1 —'|z|2)”+12n/ (1- ﬁ)i Z wlz|2krzn+2k—1dr
0

n! po k'n
— lzl n+1 (k+n) | |2k
knl( k+n+1)
I o (b+n—1) %
> —(1—12) kzz(,: Hin- Dk +nsD)

Moreover u is a.uniform limit of a sequence of functions in C.(B) and if
v € C,(B), then we can show exactly the same way as the proof of (3)
of Proposition 3 that

lim || 7% ||lo = O.
k—oo

Hence we get
lim || 7% ||c = O.

k—co

Thus if we define g = Tu —u , then g > 0 and ||g|lcc < 2, moreover

m
> T
k=0
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converges uniformly to —u as m — oco.
Combining this with Lemma 1, we get

/B ( g T’“If\) g dr

/ 111 TFgdr
B k=0

- / f] (~u) dr

< I flillulle < oo

A

Since g > 0, the proof is complete. O

3] showed that when p =1 or p = oo , the space (I —T)LF(7) is not
dense in L?(7) by showing that every f € (I — T)L?(7) satisfies

lim N T5f|l, = 0 for p=1, oo.

However next proposition shows that for 1 < p < oo, (I — T)LP(7) is
dense in LP(7).

PROPOSITION 5. If1 < p < o0, then (I —T)LP(1) = L*(7).

Proof. Let L be a bounded linear functional on LP(7), then there is a
g€ Li(r) (% + % = 1) such that

L(f) = / fodr for all feIP(r).
B
Assume that L(h) = 0 for all h € (I — T)LP(7). Then

/(f—Tf)ng = 0 for every fe€ LP(r)
B

which means, by Lemma 1

/ flg—Tg)dr = 0 for every f& LP(r).
B
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Thus g = Tg.
However, for every z € B

lg()l
= | Tg(z)

< / o)) 1 P e
— |z’ n+1 /lg 1_17-”, )n+ dT(’w)

—(eu) P
1

v e (B

< A=) g llg et = [z
for some ¢ >0 by 1.4.10 of [4]

= cliglly.

|A

A

Thus g is bounded and Tg = g, which means that ¢ is M-harmonic

(Proposition 2). In view of 4.2.3 of [4], the radialization of such g is a

constant but nonzero constant can’t belong to L9(r), which forces g to

be the constant zero.

Therefore L(f) = 0 for all f € L?(r).

From Hahn-Banach theorem, we conclude that (I — 7")L?(7) is dense in
L?(r). This ends the proof. a

If we combine the Proposition 5 with the Theorem 3.7, corollary 2.3
of [3] we get the following corollary.

COROLLARY 6. (a) Forl < p < oo,
(I-T)L*(r) = {fELPT)|{T’“f}converges}
(b) For1 < p < oo,
(I -T)Lr(r) = { feLP(r) | { T"f } converges to 0 }

We have characterize the closure of (I -T)LP(t) for 1 < p < oo by using
the iteration T* on LP(). Moreover we can also characterize the space
(I —T)LP(7) using the iteration T* on LP(7) when 1 < p < co.
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PrOPOSITION 7. For1 <p< o0

(I -T)IP(r) = {f e I7(r)

limsup || Z T f |, < oo}

m—o0
Proof. Let f = g — Tg for some g € LP(7) then
ST =g - Tl < 2lglls-

0

e
STl < 0 }
0 P
on the other hand, for 1 < p < oo, pick f € L?(7) such that

ZT’“

Hence

(I-T)I* C {fELpl lim sup

11msup = M < oo.

Define .
— Z T/ f
=0
then fi —Tfe = f — TkHL .

hence if we define "
1
Fo= —2 3 4

k=0
then || Frn lp < M and

1 m

(I-T)Fn = e ; (I =T)fx
1 m
= = 2 (=T
k=0
1

- _ _'_ZTk+1f'
m+1 P

Hence

1
| (I—T)Fn = flp < mM — 0 as m— .
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Since {F7,} is norm bounded , it has a subspace {Fn,} that converges
‘weak * to some g € LP(7) and the operator (I—T') is self-adjoint (Lemma
1) in L#(r) which makes (I —T') F;,, converge to (I —T')g weak * in LP(7).
Since (I — T')F, norm converges to f , f is the unique weak * limit of
(I-T)F,.
Therefore

f=(-Tyg € 1-T)*r)

This completes the proof. O

[3] showed that if f € L(r) satisfies Tf = uf for some u € C with
|u| =1, then f = 0.
Next proposition is an extension of it.

PROPOSITION 8. Let 1 < p < 2. If f € L?() satisfies Tf = 4f for
some u & C, then f = 0.

Proof. It is obvious when p is zero , so assume that x4 % 0. Observe
that when f € LP(7) satisfies T'f = uf then
(¢) When p =1, for every z € B

\uf) | = | TFE) | < sup (“"z'”l*'w'z)) £l

zeB ]1—(2,10)2

= |7l

(4) When 1< p < co
|uf(z)] < (1— |2t / £ ()] ( e i )”H dr(w)
- B 1= (z,w)?
< cl|fll, (for some ¢ just as the proof of Proposition 5)

Thus all such f belongs to L*(B).
For 1 <p<ooandpueC, we define
Mpy = { FelP(1)|Tf=nuf}.

First we will characterize the space M., The spectrum of T on L®(B)
is found in [3] (Theorem 2.1), which is

_TE+1)(n+1-2)
b= { L(n+1)

In view of this if y ¢ E, then My, ={ 0 }. Furthermore every 4 € E
is a point spectrum (an eigenvalue) of 7 on L®(B). Indeed if u € E

OSRezgn}.
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and f with 0 < Re 3 < n satisfies
rB+1)r(n+1-0) _
Pn+1)
then we can see that the function

gal2) = /S <|_11—_(7’.—2’;>|5 )ﬁ do(€)

satisfies T'g = ug.
However the Main Theorm of [1] has the precise characterization of the
space M, 1, which is;

A is a bounded linear operator on the Banach space My and the finite
set By defined by
F'(B+1)I(n+1-~0)

E, = {AeC|A=—48(n~3), ey =1,

—1<Ref< n+1}

is the set of all eigenvalues ofA on M.
Indeed, of By = { A1,---, Ay } then
Mg =Xy & - @Xyy

where

Xy, = {feLl'B)|Af = N[}

Now by the identically the same proof as that of the Main Theorem
of [1], we can also get the following characterization of the space M,
such as;

For each p € E, A is a bounded linear operator on the Banach Space
My and

I(f+1)(n+1~p5)
I'(n+1)

B, = {AcC|A=—48(n - ), _

0<Ref<n}

is the set of all eigenvalues of A on M, and is always finite.
Let

E;.c = {/\17"'7/\717.}
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and
Qz) = H(Z— As)

then Q(A) = 0 on My,
Thus by Lemma 4.1 of (1], we have

Moy = Xay & - © Xy,

where )
Xy = {fel®B)|Af = Mf }

Since we’ve showed that
My, = My, N LP(1)

to prove the proposition it is enough to show that
f1<p<2feIPr)and Af = \f for some A € C, then f is
identically zero.

The radial functions in X, are known to be the constant multiple of

(1— |z

ga(z) 5 '1 . <Z, g)fgna do‘(&)
where A = —4n’a(1 — «) and the function g, satisfies go = g1—o (see
4.2.3 of [4]).

Also note that the radialization carries X, N LP(7) into itself and if
a=s+it(s,t € R) , then g, € LP(r) if and only if g, € LP(7).
However by direct calculation using 1.4.10 of [4], we get that when 1 <
P < 2, gs belongs to L?(7) at no s € R, which completes the proof of the
proposition. D

(Note : When p > 2, the function g; belongs to LP(1) and satisfies
Tg% = ug: where
L%

r= 7(n+l)')
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