CHARACTERIZATION OF REINHARDT DOMAINS BY THEIR AUTOMORPHISM GROUPS

  • Isaen, Alexander-V. (Centre for Mathematics and Its Applications The Australian National University) ;
  • Krantz, Steven-G. (Department of Mathematics Washington University)
  • Published : 2000.03.01

Abstract

We survey results, obtained in the past three years, on characterizing bounded (and Kobayashi-hyperbolic) Reinhardt domains by their automorphism groups. Specifically, we consider the following two situations: (i) the group is non-compact, and (ii) the dimension of the group is sufficiently large. In addition, we prove two theorems on characterizing general hyperbolic complex manifolds by the dimensions of their automorphism groups.

Keywords

References

  1. J. Geom. Anal. v.1 Domains in Cn+1 with non-compact automorphism groups Bedford, E.;Pinchuk, S.
  2. Lecture Notes In Mathematics 1268 A characterization of CPⁿ by its auto morphism group, Complex Analysis (University Park, Pa, 1986) Bland, J.;Duchamp, T.;Kalka, M. A.
  3. Bull. Amer. Math. Soc v.76 Holomorphic mappings into tight manifolds Eisenman, D. A.
  4. Math. Res. Letters v.3 Examples of domains with non-compact automorphism groups Fu, S.;Isaev, A. V.;Krantz, S. G.
  5. Math. Res. Letters v.3 Reinhardt domains with non-compact automorphism groups Fu, S.;Isaev, A. V.;Krantz, S. G.
  6. J. Math. On the dimensions of the auto morphism groups of hyperbolic Reinhardt domains, to appear in Illinois J. Math. Gifford, J. A.;Isaev, A. V.;Krantz, S. G.
  7. Semisimple Lie algebras Goto, M.;Grosshans, F.
  8. Indiana Univ. Math. J. v.34 Characterization of complex manifolds by the isotropy subgroups of their automorphism groups Greene, R. E.;Krantz, S. G.
  9. Advances in Math. v.146 Domains with non-compact automorphism group: A survey Isaev, A. V.;Krantz, S. G.
  10. Pacific J. Math. v.184 Hyperbolic Reinhardt domains in C² with non-compact automorphism group Isaev, A. V.;Krantz, S. G.
  11. Illinois. J. Math. v.41 Finitely smooth Reinhardt domains with non-compact automorphism group Isaev, A. V.;Krantz, S. G.
  12. Invent. Math. v.3 Reelle Transformationsgruppen und invariante Metriken auf komplexen Raumen Kaup, W.
  13. Bull. Amer. Math. Soc. v.76 On the relations between taut, tight and hyperbolic manifolds Kiernan, P.
  14. Bull. Amer. Math. Soc. v.319 Complete localization of domains with non-compact automorphism groups. Kim, K. T.
  15. Hyperbolic Manifolds and Holomorphic Mappings Kobayashi, S.
  16. Proc. Symp. Pure. Math. v.52 Convexity in complex analysis, Several Complex Variables and Complex Geometry, Part 1 (Santa Cruz, CA, 1989) Krantz, S. G.
  17. Math. USSR-Izv. v.32 Holomorphic automorphisms of hyperbolic Reinhardt domains (translated from Russian) Kruzhilin, N. G.
  18. Proc. Amer. Math. Soc. v.113 An independence result in several complex variables Lempert, L.;Lubel, L.
  19. J. Math. Kyoto Univ. v.25 Homogeneous hyperbolic manifolds and homogeneous Siegel domains Nakajima, K.
  20. Kano Memorial Lectures 4 Algebraic structures of symmetric domains Satake, I.
  21. Japan. J. Math. v.15 Automorphisms of bounded Reinhardt domains Shimizu, S.
  22. Lie groups and algebraic groups Vinberg, E.;Onishchik, A.
  23. Foundations of differential manifolds and Lie groups Warner, F. W.