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FATOU THEOREMS OLD AND NEW:
AN OVERVIEW OF THE BOUNDARY BEHAVIOR
OF HOLOMORPHIC FUNCTIONS

STEVEN G. KRANTZ

ABSTRACT. We consider the boundary behavior of a Hardy class
holomorphic function, either on the disc D in the complex plane or
on a domain in multi-dimensional complex space. Although the two
theories are formally different, we postulate some unifying features,
and we suggest some future directions for research.

0. Introduction

In 1906, Pierre Fatou [9] proved the following remarkable theorem:

THEOREM 0.1. Let f be a bounded holomorphic function on the unit
disc D in C. Then, for almost every 6 € [0, 2r), the limit

fr (eig) = 111111 f(rew)
r—1-
exists.

It is of interest to say a few words about the proof. If the holomorphic
tunction has power series expansion

o0

f(z) =" a7,

i=0
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then in polar coordinates we may write
&)
f(re®) = Zajrje”e.
=

Thus seeking the limit lim,_,;- f(re®?) is the same as calculating the limit
of the Abel mean of the Fourier series

S~ Z a;e”’.
=0

At the time that Fatou did his work, Fejer’s theorem about the conver-
gence of the Cesaro means of the Fourier series of a piecewise continuous
function was a matter of great interest, so it stands to reason that Fatou
would have had Cesaro convergence on his mind. And it was known that
Cesaro convergence implies Abel convergence. So in fact Fatou proved
that the Cesaro means of the Fourier series whose coefficients come from
a bounded holomorphic function converge.

About a dozen years later, Privalov and Plessner (see [38]) made a
seminal contribution to the theory by noticing that the radial conver-
gence used in Fatou’s theorem is far too restrictive. Let o > 1. For
6 € [0,2), define

T (e ={zeD:|z— <a(l —|z|)}.

The set I',, is known as a Stolz region or non-tangential approach region.
See Figure 1. Then the result is this:

Figure 1
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THEOREM (.2. Let f be a bounded holomorphic function on D. Fix
a real number « > 1. Then, for almost every 6 € [0, 2r), the limit

)= lLim f(2)

Lo(g?)32—e

exists.

Of course we have incorporated into the statement of this result the
obvious fact that the limit over the larger non-tangential approach re-
gions will be the same as the limit taken over the radii (which they
contain).

1. The Existence of the Boundary Function

First let us see why f* exists in any sense whatever. Let f be a
bounded harmonic (there is no need to assume that the function is holo-
morphic) function on the unit disc in C. For 0 < r < 1, define

Fo(e®) = f(re®).
Then {f.} is a bounded set in L*(8D). And notice that L* is the
dual of L!. So {f,} is a bounded set in (L!)*. But the Banach-Alaoglu
theorem tells us that the unit ball in the dual of a Banach space is weak-
* compact (see [39]). Thus there is a subsequence f;, that converges
weak-+ to some limit function f* € L*.
Now fix 0 < 7 < 1 and 0 < 8 < 27 and set ¢(t) = P, (e!?~%). Here

P, is the usual Poisson kernel for the unit disc (see formula (4.0)). The
definition of the weak-* topology tells us that

/ F(oydi— [ 1o

as j — 0o0. Writing out the definitions of the components of this formula
then yields

/ F(ri€) P, (€00) dt / £ ()P (e60) dt.

The reproducing property of the Poisson kernel allows us to rewrite the
lefthand side to obtain

f(r . .r.jeie) _, /f*(eit)Pr(ei(G—t)) dt.
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Finally, we may evaluate the limit of the left-hand side and obtain
flre®) = [ £(eR()at

Thus our original bounded holomorphic function f is the Poisson
integral of the (abstractly obtained) boundary function f*. It is no
accident that we have chosen to denote this function by f*, for our next
goal is to show that f converges pointwise to f* in the sense of either
Theorem 0.1 or Theorem 0.2. Our main tool for doing so will be maximal
functions.

2. A Digression on Maximal Functions

The modern method for studying the Privalov/Plessner theorem is
by way of maximal functions. We now give a brief description of this
methodology.

In fact we shall endeavor to paint our problem on a larger canvass.
QOur ultimate goal in this paper is to look at analogs of Theorems 0.1
and 0.2 in higher dimensions. Maximal functions will also be key to
understanding that situation correctly, and they will be a unifying theme
for all the various theories. And there will be several different maximal
functions at play. So we may as well, in this section, present things from
a “higher dimensional” point of view. Let us begin with R".

Let g € Li, (RY). We define

1
Mg(z) = o ey e /B o lg(t)] dm(2).

[Here we denote Lebesgue measure by m.] This is the Hardy-Littlewood
mazimal function. The operator M is not linear, but it is sublinear; that
is, it satisfies the inequality

M(f +g)(z) < Mf(z)+ Mg(z).

It will be useful to know how M acts on1 the Lebesgue spaces L?.
The key to such boundedness issues is to establish a covering lemma.

PROPOSITION 2.1. Let K C R" be a compact set that is covered
by the open balls {Ba}sca, Ba = B(¢s 7). There is a subcollection
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Bay, Bay, - - ., Ba,, consisting of pairwise disjoint balls, such that
»
3B, 2 K.
=1

[Here 3By, = B(cq, 37y,)-]

Proof. Since K is compact, we may immediately assume that there are
only finitely many B,. Let B,, be the ball in this collection that has the
greatest radius (this ball may not be unique). Let B,, be the ball that
has greatest radius and is also disjoint from B,,. Assume now that balls
Bays . - - Ba, , have been selected. At the j* step choose the (not neces-
sarily unique) ball of greatest radius that is disjoint from By, ..., Ba,_;-
Continue. The process ends in finitely many steps. We claim that the
B, chosen in this fashion do the job.

It is enough to show that B, C U;B(cy;, 31,) for every o. Fix an o If
a = a; for some j then we are done. If a ¢ {e;}, then let j; be the first
index j with By, N B, # (0 (there must be one, otherwise the process
would not have stopped). Then Ta;, 2 Ta; Otherwise we selected B%
incorrectly. But then clearly B(c%,?)r%) 2 B(ey, 7o) as desired. O

The next result that we prove is called a weak type (1,1) estimate. It
is a substitute for the more familiar strong type (1, 1) estimate | M f||p1 <
C - |Ifllzr (which turns out to be false).

LEMMA 2.2. If f € LY(RY), then

Il £llz

m{xEIRN:Mf(CU)>)\}SCT,

all A > 0.

Proof. Let Sy = {x € RY : M f(z) > A}. Let K be a compact subset
of Sy. It suffices to estimate m(K'). Now, for each x € K, there is a ball
B, centered at x such that

1

(2.2.1) m A

|£(E)|dm(t) > A.
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The balls { B, }zcx cover K. We may choose, by Proposition 2.1, disjoint
balls By, By,, - - -, B, such that {3B;,} cover K. Then

m(K) < Zm(Sij)

p
= SNZTTL(BIJ>.
j=1

But (2.2.1) implies that the last line is majorized by

dm
e If(f\)l 0 prltle

This completes the proof of the theorem. -

COROLLARY 2.3. Let 1 < p < co. There is a constant C, such that,
for f € LP(RY),
M £z < Cp- || flzo.

Proof. The assertion for p = oo is true simply by inspection of the
definition of M. We also know, by the lemma, that M is weakly bounded
on L!. Now the Marcinkiewicz interpolation theorem (see [42]) implies
that M is bounded on LP. That is the assertion of the corollary. O

Now.we have formulated and proved Lemma 2.2 on the Euclidean
space RY, But in fact it is easy to see that variants are true in other
settings. If @ C R is a smoothly bounded domain (C? boundary suffices
for most purposes) then we may define a ball with center z € 02 and
radius r > 0 by

Gi(z,r) ={t €0Q: |z —t| < r}.

Then the covering lemma applies grosso modo to the balls 8y (z,7), just
because By(z,7) = B(z,r) N Q. The proof of Lemma 2.2 does not
literally apply to the balls 5i(z,r) because (denoting surface measure
on OQ by o) it is no longer the case that there is a universal constant
C such that o(81(z,3r)) = C - o(fi(z,r)). But there will be a constant
C' (depending on the curvatures of 8%) such that o(8:(z,3r)) < C'-
o(B1(z,7)). That suffices to prove an analog of Lemma 2.2 in the setting
of 942.

There are even more general contexts in which we shall need analogs
of Theorems 2.1 and 2.2, so we now formulate a set of axioms (which



Fatou theorems old and new 145

have evolved through work of Hormander [11], K. T. Smith [40], and
Coifman/Weiss [7]) that are a natural setting for the type of analysis we
have been describing.

DEFINITION 2.4. Suppose that we are given a set X that is equipped
with a function p : X x X — R*. We assume that p satisfies the three
conditions

(2.4.1): p(z,y) = 0 if and only if z = y;

(2.4.2): p(z,y) = p(y, 2);
(2.4.3): There is a constant Cy > 0 such that, if z,y, 2 € X, then

p(z,2) < Co[p(z,y) + p(y, 2)].
[We call this displayed relationship the quasi-triangle inequality.]
Then p is called a quasi-metric for the space X.

We take the balls B(z,7) = {y € X : p(z,y) < r} to be the sub-basis
for a topology on X.

DEFINITION 2.5 (Axioms for a Space of Homogeneous Type). Assume
that the space X is equipped with a quasi-metric p. Also assume that
there is given a measure ¢ on X. For convenience, we assume that p is a
regular Borel measure. We say that (X, p, 1) is a space of homogeneous
type if the following axioms are satisfied:

(2.5.1): Foreach z € X and r > 0, 0 < pu[B(z,r)] < oo;
(2.5.2) [The Doubling Property]: There is a constant C; > 0
such that, for any z € X and r > 0, we have

p[B(z,2r)] < Cy - p[B(z,7)];

REMARKS.

(1) There are many different definitions of “space of homogeneous type”
(see [7], [4], [24], [2] for example). In some applications, it is convenient
to replace the quasi-triangle inequality by the so-called “enveloping prop-
erty”: There is a constant K > 0 such that if B(z,7) N B(y,s) # 0 and
s > r then B(y, Ks) 2 B(z,r).

(2) Tt is not difficult to see that Euclidean space, equipped with the
standard Fuclidean metric and with Lebesgue measure, is a space of
homogeneous type. Also the boundary of the unit disc (i.e., the unit
circle) is a space of homogeneous type when equipped with the usual
arc-length measure and with Euclidean distance. We shall encounter
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more profound examples of spaces of homogeneous type later in the pa-
per. See [15] for a more detailed discussion of this concept.

We define the Hardy-Littlewood maximal function on a space X of ho-
mogeneous type by

Mf(P) = sup mlp—)) / L @14,

=0 Kb

The reader may check that, on any space X of homogeneous type equipped
with quasi-metric p and measure p, and with balls defined accordingly,
analogs of both Proposition 2.1 and Lemma 2.2 will be true. It is for
this reason that we have introduced the abstraction of spaces of homo-
geneous type. It will turn out that, in the setting of several complex
variables that we study in detail later, spaces of homogeneous type are
the correct framework in which to understand the boundary behavior of
holomorphic functions.

3. Return to Holomorphic Functions on the Unit Disc

Now we use the Hardy-Littlewood maximal function on the unit circle
to gain control of the boundary behavior of holomorphic functions on
the disc. We record here, for the record, that the maximal function is

: 1 :
Mf(e?) = sup —— | f(e")] dt.
r>0 2R Jig_roir)

PROPOSITION 3.1. Ife?® € 8D,1 < o < co, then there is a constant
Cy, > 0 such that if f € L'(8D), then

sup  |Prf(e?)] < CoMf(e?).

reit el (ef)
Proof. For re € T'y(e?), we have

|6 — @] < 2a(1—r).
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Therefore, for 1/a < r < 1, we obtain

|1 ()]
i Y 1—7r?
_ |1 i(6-v)
271-/ fle )1—2TCOST,[)+T2 dw‘
JL( ’L(¢—'¢)) 1 — T
21 (I—-r)2+4+2r(1— cosw)
[1032(7"/ le(1-r)))+1
4 ; 1—r2
< i(d—1)
D R e e 0 )
1 ; 1—r?
il (X)) | s——— dip,
27 Jiyl<a(i=r) 7 ) (1—r)?

where S; = {¢ : 2a(1 — r) < [¢| < 27*1a(1 — r)}. Now this is

< |F(e0)| dyp

8 1 /

dro? JZZ; 2572(1 = 1) Jigle@+2)a(1-r)
2 1 / 6v)

+o= F(E@) dy
2l =1 Jiyl<saii—n |

3 PN N —

[l 20(2 +21)(1 — 1) Jiyie(er2ma(ion

6o 1 / (60—
T . S F(EO9)| dy
m2-3a(l—r) |p[43a(1 r)l ( )

IA

()] dy

< 20 Eszf () + M (")
< ilﬁMf( ) 4 22 M (e
= O Mf().

If0<r<1/athen

P < o / F(E9) 2/ (e — 1))dy

2a i
M ().

Thus we have estimated F, f in terms of M f. The proof is complete. O

<
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Now we will examine Theorems 0.1 and 0.2 from a broader perspec-
tive. Rather than consider only bounded functions, we now define a
growth condition. If f is a harmonic function on the unit disc and
0 < p < oo then we say that f € h?(D) if

1 27 ) 1/p
I = sup |5 [ Ifrepae] <o
o<r<1 [ 27 Jo

Observe that || ||w is a true norm only when p > 1. We say that f € h*
if f is bounded. The corresponding norm is || f{lne = sup |f|. If f € b?
and f is, in addition, holomorphic, then we write f € HP(D). The space
H? is the classical Hardy space.

Now our first complete result about boundary behavior of functions
is as follows:

THEOREM 3.2. Let f € h?(D) and 1 < p < . Let f* be as in
Theorem 0.2 and 1 < «. Then

lim  f(z) = f*(€?), a.e. e’ cdD.

Tu(e?)32—e

Proof. It suffices to handle the case p < 0o and f real-valued. If ¢ > 0
then choose g € C(8D) real-valued so that || f* - g||1sap) < €. We know
by the theory of the Dirichlet problem that

(3.2.1) lim  g(2) =g(e?), all €% caD,

Ty (e?)3z—el?
where g(re®) = P.g(e¥). Therefore

m{e® : limsup |f(2)— f*(e?)] > €}

Tu(e)2z—el?

< m{e?: limsup |[f(2) —g(2)| > ¢/3}

La(eif)22—e?

+m{e? . limsup [g(z) — g(e”)| > ¢/3}

NG E P
+m{e? :1g(e”) - £*(e”)] > ¢/3}
< mie” : CaM(f* —g) > ¢/3} + 0+ (llg — f*[l1r/(e/3))"-

In the last estimate we used Proposition 3.1 and Chebychefl’s inequality.
Now the last line is majorized by

Colllf™ — gllze/ (/3 + 3 < Cé.
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It follows that
0 lim  f(z) = (), ae. €% ¢€dD.

To(g?)22c"
The informal statement of Theorem 3.2 is that f has non-tangential
boundary limits almost everywhere.

Note once again the restriction in Theorem 32t0l < p <o Isit
possible to push the value of p down below 17 In case the function f
is holomorphic then the answer is “yes”. There are several ways to see
why this is so. For the moment, we explain the point by way of Blaschke
products.

If a is a complex number such that |a| < 1 then we define

—a

80 = T2
for ( € D. If 37,(1 — [a;]) < oo then it is a classical fact that

1'[ Tal#a(0)

converges, uniformly on compact subsets of D (see [14], §§8.1 for details).
Further, if f € H*(D), 0 < p < oo and if {a;} are the zeros of f,
listed with multiplicities, then »_ (1 — |a;[} < oo. Thus the product
defining B({) converges. So we can consider
f(©)
F(O) = 2%
=50

It can be shown that F' € H? and has the same norm as f. And of course
F is zero free. Then the function G = F?/? (when p < 00) is holomorphic
and G € H?. By Theorem 3.2, G has non-tangential boundary limits
almost everywhere. But then, untangling what we have said, F' has
non-tangential boundary limits almost everywhere. Hence so does f.
That completes the proof. g

4. The Case of Several Real Variables

We have gone into almost painful detail with the disc (i.e., the one-
dimensional) case because the arguments that are used there are funda-
mental to all that follows. Because of the care we have taken thus far,
we may present the next arguments in a rather flowing fashion.
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Suppose now that f is a harmonic function on the unit ball B in RV.
Further assume that f € h?, 1 < p < o, where

1/p
Il = sup { [ e da(&)} when 1 < p < %0

and h* is just the bounded harmonic functions with the obvious norm.

A functional analysis argument, exactly like that in §§1, shows that a
boundary function f* exists. Moreover, we have an explicit formula for
the Poisson kernel for the ball:

1—|zf?
|z — g’
where ¢y is 1/0(8B). If f € L}(8B) then we write

Pf(z) = fa P )f(t) dote).

The reader may consult [14] for details about P. The kernel is derived
in that source, and the exact value of ¢y (which is of no interest for
us here) is determined. In point of fact the reader may check that in
dimension two, using polar coordinates, the Poisson kernel assumes the
familiar form

P(z,y) =CN -

1 1-172
21 — 2rcosf +r2’

Now we are going to need sorne non-tangential approach regions. Let
a>1and P € 9B. Then

IFo(P)={ze€B:|lxt—P|<a(l-|z|)}

We define balls 3;(P,r) in the boundary of B, just as we did in §§2.
The corresponding maximal function is defined as usual. And it will be
bounded on the L spaces in the expected way because 8B, equipped
with these balls and with surface area measure and the Euclidean metric,
is a space of homogeneous type.

The proof of Proposition 3.1 may now be imitated, step by step, to
show that if f € L'(0B) then Pf satisfies

sup |Pf(t)| < C - Mf(z)

tely(z)

(4.0) Pi(e") =

Here we are using a suitable version of the Hardy-Littlewood maximal
function on 8B, as discussed at the end of §§2.
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Finally, the proof of Theorem 3.2 may be imitated verbatim to estab-
lish the following result:

THEOREM 4.1. Let 1 < p < co. Let f € h?(B). Fix a > 1. Then

: *
rﬂ(%g:lc—.}? (z) = f"(P) ae PciB.

It should be stressed that a crucial aspect of the proof of the result of
Theorem 4.1 is that we have an explicit formula for the Poisson kernel,
and therefore may estimate it just as we did in the proof of Proposition
3.1. What would happen if the ball B were replaced by a more general
smoothly bounded domain 27

First, what does h?(Q2) mean? A careful answer to this question is
developed in [14, Chapter 8]. A correct, but more informal, answer is
that we replace the spherical surfaces that we have been considering so
far by hypersurfaces that are parallel to the boundary of 2. See Figure
2.

Figure 2
In this circumstance there is no hope of obtaining an explicit formula
for the Poisson kernel of €2. Nonetheless, by using delicate comparison
domain arguments (see {14, Chapter 8]), it is possible to show that

§(z)

Plz,y) = C- ————=
(@.9) |z —y|¥

z €N, ye .
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Here d(z) is the distance of z to Q. As a result, P(z,y) may be es-
timated in much the same way that we estimated the explicitly given
Poisson kernel for the ball.

The other aspect of the “round analysis” that we did for the disc
and the ball that will not work on an arbitrary domain is the dilation
argument used to define the functions f, in the functional analysis proof
of the existence of f* (§§1). In fact a different type of analysis (due to
E. M. Stein—see [14] for the details) is needed. One lets U be a tubular
neighborhood of 82 and covers U N Q with sub-domains €2;, where each
2, has the following properties:

1. Q; has smooth boundary (as smooth as 2);

2. For each j there is a unit outward “normal” vector v; such that, for
€ > 0 small, the closure of the domain Q; —ev; = {z—ev; : z € Q;}
lies in £2.

See Figure 3.

Figure 3
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"Then, instead of applying Banach-Alaoglu to { f,}, one instead applies
it to {fjc} on Q;, where f;.(z) = f(z — ev;). The rest of the analysis
proceeds essentially as in the two cases (the disc and the ball) that we
have already discussed. The result is the following theorem:

THEOREM 4.2. Let @ C RY be a bounded domain with smooth (at
least C?) boundary. Assume that 1 < p < co. Let f € h?(Q). Fix
a > 1. Then

li = f*(P .e. P €0Q.
namp T = I ae e

There is no hope now of extending p below 1 by passing to holomor-
phic functions. If N = 3, for instance, then there is no way to make
sense of “holomorphic”’. There are additional problems, for there is no
Blaschke or other factorization in higher dimensions. The next sectien
will begin to make inroads into this new set of difficulties.

5. Analysis on the Unit Ball in Complex Space

Now let B = {2z € C" : 37.]%|* < 1}. Let f be a holomorphic
function on B that also lies in h? for some p. We say that f € H?(B).
We can use the “forgetful functor” and observe that f is also harmonic.
Therefore, according to Theorem 4.2, if 1 < p < co then f has non-
tangential boundary limits almost everywhere. What can be done to
amplify or extend this basic fact? Can anything about holomorphicity
be exploited?

To address the fact (see [14]) that there is no canonical factorization
in several complex variables, one can use subharmonicity. In fact if an
f as in the last paragraph is holomorphic then |f|? will be subharmonic,
and it can therefore be proved that it will have a harmonic majorant.
As a result, arguments (similar, but more complicated than, the proof of
Theorem 3.2) due to E. M. Stein can be applied to show that 7 will still
have non-tangential boundary limits almost everywhere. A. Koranyi, in
1969 (see [12, 13]), made the following profound observation.

If one wants to take full advantage of the holomorphicity of f then one
should use a reproducing kernel that is special for holomorphic functions
(after all, the Poisson kernel was designed only for harmonic function
theory). The right kernel to use is the so-called Poisson-Szegd kernel.
Let us say a few words about that kernel now.
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Consider the Hardy space H?(B). A function f € H?(B) is holomor-
phic and satisfies

sup [ |f(re)|*do(€) < o0.
oB

0<r<l

According to the preceding discussion, we may associate to such an
f its boundary limit function f*, and Fatou’s lemma guarantees that
f* € L?(6B). So we may think of H?(B) as a closed subspace of L*(JB).
We use the norm || f|| 2@y = || f*llz2(a8)- Let 2 € B be a fixed point; the
Poisson integral formula shows that the map

. H(B) > f — f(2)

is a bounded linear functional. Elementary Hilbert space theory then
guarantees that there is an element k, € H?(B) such that

0:(f) = (I, kz)
for all f € H?(B).

We set S(z,¢) = k.(¢). Of course k; is an element of H2(B) so it, too,
has a boundary limit function that is in L2. It can be shown that S(-, -)
is a conjugate symmetric function of its two variables. So we may think
of S as a function that is L? in each of the variables z and { separately.
See [14] for a full development of the theory of this important kernel,
which is known as the Szegd kernel.

A formal construction, coming from representation theory, suggests
that we define an associated positive kernel by

p(ag) - B2

This is the Poisson-Szegé kernel. The kernel P is still a reproducing
kernel for H%(B). On the unit ball B C C", this kernel is given explicitly
by

\ ¢ Sl i
() PO =an— wm

Here z - ¢ = 21(1 + - - - + 2,(n. The new kernel P is positive and it still
reproduces H? in the sense that

f0)= [ PEOsQdo)  forall f € H(B).
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At this point it is natural to attempt to (formally) imitate the argu-
ments given in §§4 using the Poisson kernel with harmonic functions, but
now to use the Poisson-Szegd kernel and holomorphic functions. How
will things change? The main difference will be in the way that we esti-
mate the kernel. An examination of the proof of Proposition 3.1 shows
that that argument was successful because the kernel P meshes nicely
with the approach region I',. This point is easiest to see if we use the
notation from RY: the key fact about the ball Poisson kernel

1—|zf?
Ploy) = o gw
is that the denominator |z — y|¥ can be controlled by a power of the
numerator 1 — |z|? on the region Iy = {z : |z — y| < a(1 — [z])}.

Now refer to formula (x). Proceeding by analogy, we define, for a > 1

and P € 0B, new approach regions

AP)={2z€B:|l—z-P|<a(l-|z)}

The approach region A,(P) is called an admissible approach region. To
see that this new approach region is fundamentally different from I',,, we
now do a calculation.

Figure 4
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First we “calculate the shape” of I',. Restrict attention to complex
dimension 2. Fix the point 1 = (1,0) € dB. Then I'y(1) is defined by
the condition

lz — 1| < a(l —|z]).
More explicitly, this is

|21 — 1P + |2f® < &® - (1 = |22

In particular,

21 — 1| < (1 = |2])
and

|z2] < (1 - |2]).

The thing to see is that the condition on 2; (i.e., that it deviate from 1
by not more than a(1—|z|)) is just the same as the condition on z, (that
it deviate from 0 by not more than «(1 — |z|)). Thus T, is isotropic: its
extent in each direction is the same. It is a cone. See Figure 4.

Now we will “calculate the shape” of A,(P). Again restrict attention
to complex dimension 2. Fix the point 1 = (1,0) € B. Then A, (1) is
defined by the condition

1—2z-1] < a(l—|z).
More explicitly, this is
(%) 1—2z| < a(l—|z|).
But we are restricted to study only points in B. This says that
|.12‘!1|2 + |ZQ|2 <1

or
2] = 1—]a)?
(L+|z1])(X = J])
S 2|1 — 21|.

Substituting (**) into this last inequality gives

22| < V2ay/1— Jai].

Thus the condition on zy is now the square root of the condition on zy.
A moment’s thought reveals that this non-isotropic condition forces A4,
to be conical in the z; direction but parabolic in the z, direction.

Once we understand that the Poisson-Szegd kernel can be estimated
on an admissible approach region in just same way that the classical
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Poisson kernel can be estimated on a non-tangential approach region,
then it is natural to ask whether one can in fact estimate the Poisson-
Szegd integral in terms of a maximal function. The answer is “ves”, but
the correct maximal function cannot be the isotropic Euclidean maximal
function that we have been considering thus far. An examination of the
proof of Proposition 3.1 reveals that the balls used to define the maximal
function there were in fact sublevel sets of the denominator of the Poisson
kernel: the geometries must mesh.

The situation is the same in the present context. The Poisson-Szego
kernel of the unit ball has denominator that is a power of the non-
isotropic expression |1 — z - ¢|. Thus we need to consider balls

B¢, r)={(€dB:|1-¢€.] <r}.

The calculation that we have already done will show that such a ball
has extent r in the complex normal direction but has extent /7 in the
complex tangential directions. Again, it is non-isotropic.

Now the key fact, pursuant to the point of view that we have been
developing here, is that the space X = OB, equipped with the balls
B2(¢, ), the standard surface measure do, and the metric!

p(C,€) =4/I1~¢-(]

is a space of homogeneous type. Thus there is a Hardy-Littlewood max-
imal function, and it is weakly bounded on L! and strongly bounded
on I? for 1 < p < co. Now we have all the necessary ingredients for
a theorem: (i) the right reproducing kernel, (ii) the right balls in the
boundary, (iii) the right maximal function. Putting them together ac-
cording to the paradigm that we have laid out for the disc and for the
ball and for general domains Q in RY, we obtain the following theorem:

THEOREM 5.1 ([12, 13]). Let 0 < p < oo and suppose that f &
H?(B). Fix o > 1. Then

lim  f(z) = f*(P)

Ay (P)32—P
for almost every P € 9B.

Koranyi’s theorem was considered to be quite a surprise. The clas-
sical literature on the disc demonstrates in a variety of senses (see [6]

1The proof that this is a genuine metric is non-trivial, and appears in [19], p. 149.
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or [38]) that boundary limits along a tangential (that is, a non-non-
tangential) trajectory are impossible. Certainly Koranyli’s theorem does
admit some tangential boundary limits. But it must be understood that
these tangential limits are along the complex tangential direction, and
that direction does not exist in one complex dimension!

Next we look at the theory of Stein for general domains in multi-
dimensional complex space.

6. Fatou Theorems on Arbitrary Domains in Complex Space

The good thing about Koranyi’s approach to the boundary behavior of
holomorphic functions is that it shows that there is more to life than non-
tangential approach. The bad thing is that it is too heavily dependent
on formulas. In order to really understand what is going on, we require
some (differential) geometry.

Let O C C" be a smoothly (at least C?) bounded domain. Given
what we have done up to this point, it is natural to endeavor to look at
the Poisson-Szegd kernel for 2. There is the rub. At the time that E. M.
Stein studied this matter, virtually nothing was known about canonical
reproducing kernels on a domain in C” that is not a bounded symmetric
domain. So Stein had to develop an approach that side-steps the need
for information about the Szego and the Poisson-Szegd kernels.

This is in fact one of the most interesting points in the development of
the subject. Typically in mathematics one gives up something in order
to gain information somewhere else. By relinquishing the (unattainable)
information about the Szegd kernel for an arbitrary smoothly bounded
domain? in C*, Stein was able to prove a result—which we shall discuss
momentarily—about any smoothly bounded domain in any C". But in
fact his theorem is not optimal unless the domain is either the ball or is
strongly pseudoconvex.

It turns out that, in order to prove the sharp Fatou theorem for a
domain in C", it is necessary to obtain sharp information about the
boundary Levi geometry of the point P € 92 that is being approached.
As is explained in [16], [17], there are several paths to the needed in-
formation. One is by way of the theory of finite type that has been

’Indeed, this information is still unavailable except for certain special classes of
domains—strongly pseudoconvex domains, finite type domains in C?, and finite type
convex domains in C"*.
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developed by Catlin, Kohn, and D’Angelo (see [14] for a thoroughgoing
discussion of finite type). Another is by way of detailed information
about the singularity of the Szegd kernel (indeed one may use sublevel
sets of the Szegd kernel to define the needed balls on the boundary). Yet
another is to utilize invariant metrics (see [18]).

Let us now make the necessary definitions so that we may formulate
Stein’s theorem. Then we shall explain how the ideas may be pushed
much further.

If z,w are vectors in C”, we continue to write z- W to denote 3 , 205
(Warning: It is also common in the literature to use the notation z-w =
>, 2iW;.) Also, for @ C C" a domain with C* boundary, P € 9, we let
vp be the unit outward normal at P. Let Cvp denote the complex line
generated by vp : Cvp = {(vp: ( € C}.

By dimension considerations, if Tp(0Q) is the (2n — 1)-dimensional
real tangent space to OS2 at P, then { = Cuvp N Tp(0N) is a (one-
dimensional) real line. Let

Tp(0Q) = {z€C":z.Up =0}
= {2z€C":z-W=0Vw e Cuvp}.

A fortiori, Tp(02) C Tp(0N). If z € Tp(852), then iz € Tp(8N2). There-
fore Tp(O€Y) may be thought of as an (n — 1)-dimensional complex sub-
space of Tp(092). Clearly, 7p(09) is the complex subspace of Tp(0) of
maximal dimension. It contains all complex subspaces of Tr(95)). We
may think of 7p(8(2) as the real orthogonal complement in Tr(92) of £.

Now let us examine the matter from another point of view. The com-
plex structure is nothing other than a linear operator J on R** that as-
signs to (Z1, 2, . . . , Tan—1, Ton) the vector (—za, T1, —T4, T3, . . . , —Ton, Ton—1)
(think of multiplication by ¢). With this in mind, we have that J :
Tp(02) — Tp(69Q) both injectively and surjectively. Notice that Jvp €
Tp(0Q) while J(Jvp) = —vp & Tp(89). We call Cvp the complex nor-
mal space to 00 at P and Tp(99) the compler tangent space to O at
P. Let Np = Cvp. Then we have Np L Tp and

C* = Np®cTp
Tp = RJvp &g Tp.

The next definition is best understood in light of the foregoing dis-
cussion and the definition of B2(P,r) in the boundary of the unit ball
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B. Let Q cC C* have C? boundary. For P € 89, let 7p : C* — Np be
(real or complex) orthogonal projection.

DEFINITION 6.1. If P € 052 let
B(Pr) = {(€dQ:|(—P|<r}
Bo(P,r) = {C€dQ:|np(¢ - P)| <r|¢—P|<r'?}
NoTE: The ball 3;(P,r) has diameter ~ /7 in the (2n — 2) complex

tangential directions and diameter ~ r in the one (normal) direction.
Therefore (Ge(P, 1) = (\/r)" 2 r = Cr™.

As usual, we let dq(z) = 6(2) denote the distance of z € Q to 6. If
z€Q,Pe i, we let

6p(z) = min{dist(z, 8Q), dist(z, Tp(2))}-
Notice that if Q2 is convex, then dp(z) = dq(z).
DEFINITION 6.2. If P € 8Q,a > 1, let
Ao(P)={z€Q:|(z = P)-Up| < abp(2), |z — P|* < adp(2)}.

Notice that §p is used because near non-convex boundary points we
still want A, (P) to have the fundamental geometric shape of (paraboloid
x cone) as shown in Figure 5.

Figure 5
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DEFINITION 6.3. If f € L*(99) and P € 82 then we define

Vif(P) = sipe (8P [ IFOlO),  G=1.2

r>0
DEFINITION 6.4. If f € C(Q), P € 61, then we define
2 Y(P) = sup |f(2)].
26 Aa(P)

Now, given the setup that we have pursued thus far, we would like
to think that we could majorize f3** by Ms. Unfortunately, we do not
know how to do this; because to do so requires a kernel, and we do not
have one. So Stein’s trick is to intervene with the real variable theory,
in which context we do in fact have a kernel (namely, the tried and true
Poisson kernel). In fact the correct statement is this:

LEMMA 6.5. Let u € C(Q) be non-negative and plurisubharmonic on
Q). Define f = u|g, . Then

uy”(P) < CoMy(Myf)(P)
for all P € 9Q and any o > 1.

We shall not prove this result (but see [14]). Let us say just a few
words about why it is true.

Let z € A,(P). Let 6(z) denote the Euclidean distance of z to <.
Then u(z) can be written as the average of u over a polydisc d with
extent §(z)/2 in the complex normal direction and extent c - \/§(z) in
the complex tangential directions. Now, for each w € d, we may express
u(w) as the Poisson integral of u| sq- Lhus, using the real variable theory,
we may estimate |u(w)| by C - Myu(@) (here @& is the projection of w
to the boundary). To summarize: (i) the average of u over the polydisc
d will be majorized by the maximal function Mj, and (ii) the value of
each u(w), for w € d, will be majorized by the maximal function M.

Now it turns out that 912, equipped with the balls 35 and the standard
surface measure do and with a suitable metric that is constructed with
the balls (or, alternatively, with the enveloping property as in Remark (1)
following Definition 2.5) is a space of homogeneous type. So the maximal
operator M, is bounded on the I* spaces in the usual way. And of
course Jf) may be equipped with a different space of homogeneous type
structure by instead using the balls 5y, the standard surface measure
do, and the Euclidean metric. This observation shows that the maximal
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operator M; is bounded on the L? spaces in the usual way. Thus Lemma
6.5 may be used, in analogy with what we did in Theorem 3.2, to prove
Stein’s theorem:

THEOREM 6.6. Let © C C® be a C%-smoothly bounded domain and
let f € H?(Q) for some 0 < p < 00. Fix a number @ > 1. Then

i z)=f(P e Q.
Au(}ljl)rari_‘Pf() f(P) for a.e. P €0

7. The Shortcomings of Theorem 6.6, and a Broader Per-
spective

A simple example will suffice to demonstrate why Theorem 6.6 is not
the full picture of the boundary behavior of holomorphic functions of
several complex variables.

For m a positive integer, let Qm = {(21,20) € C*: |21]? + |22|*™ < 1}.
Let f be a bounded holomorphic function on €,,, and assume that f
has a radial limit at the boundary point 1 = (1,0). That is to say, we
suppose that

lin{l_ f(r,0) =¢.

Let p/ = (p, p%) be a sequence of points approaching 1 = (1, 0) with the
property that p] is real and positive and
(*) "™ < AL — i,

where A(j) > 0 tend monotonically to zero. For each j, we apply the

Cauchy estimates from one complex variable to the function f(p7, -) on
the disc

4={ceciiq <o),

Let K be the supremum of f on Q. Then we have (by a suitable
version of the mean value theorem)
_ . ; K -1
50) ~ F 0 < A e

Using (x) we conclude that |f(p?) — f‘(p{, 0)] — 0. So the function f has
the same limit along the sequence {p’} that it does along the radial ray.
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Of course there is nothing special about the particular sequence {p’}
that. we chose in the preceding discussion. In fact that argument, com-
bined with the classical Lindelof principle (see [5]), shows that f will
have limit £ in an approach region that is non-tangential in the com-
plex normal direction and has aperture (nearly) of shape y = z>™ in
the complex tangential directions. [For instance, when m = 2 then the
aperture is (nearly) quartic in the complex tangential directions.] Again,
the details of the present discussion may be found in [14], §§8.7.

To simplify our discussion, let us now specialize down to 5. It would
be incorrect to conclude from the arguments of this section that the
correct approach region at all boundary points of Q) is (nearly) quartic
in complex tangential directions. The fact is that we tacitly used the
Levi geometry of the boundary limit point 1 = (1,0) when doing our
calculations. This point is not strongly pseudoconvex; in fact it is of
finite type 4 (that is why the disc d fits inside the domain €);). And the
same is true of all points (e,0), 0 < 6 < 2x. But the other boundary
points (which of course form an open, dense subset of the boundary) are
strongly pseudoconvex. So the correct analysis for those points is the
analysis corresponding to m = 1. In other words, for those points the
correct shape of an approach region is parabolic in complex tangential
direction, just as for the approach regions on the unit ball in C".

But the situation is subtle. Let us calculate the Levi form for a
boundary point of Q. [Refer to [14, Chapter 3] for background on these
matters.] The defining function for € is p(2) = |21]? + |2|* — 1. The
matrix that defines the Levi form at z = (21, 25) € 08 is

Lz((l) 4]22|2> :

A tangent vector at z will have the form

A= (_222_‘2_220! ’ O{) 3
2

for a complex parameter o. Thus
4[z[%|o?
|22

Now we may see explicitly that points of the form (e, 0) are weakly
pseudoconvex. All other points are strongly pseudoconvex. But we note
that the eigenvalue of the Levi form degenerates to zero as the second

LAA) =1 T4l - a2
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complex coordinate of the base point z tends to zero. By invariance
considerations, it stands to reason that any calculation, using Levi ge-
ometry, of approach regions for a Fatou theorem will yield an approach
region whose aperture depends on the size of that eigenvalue.

In summary, the parabolic approach regions at points (z1, z;) € 6%
with zo non-zero and small will become ever-wider in aperture as |23| — 0
and will ultimately pass to the approach region of quartic size that is
appropriate for points of the form (e, 0).

Thus any theory of the boundary behavior of holomorphic functions
that takes into account the true complex geometry of the boundary of
the domain in question will have to assess how that geometry varies from
boundary point to boundary point. In the case of the domain 2y, that
assessment is fairly simple: it turns out only to depend on |z|. But for
a general domain—especially in higher dimensions—the situation will
be quite complicated. Suppose, for example, that 92 is real analytic.
Then the set of strongly pseudoconvex points in the boundary will form
a dense open set. The set of weakly pseudoconvex points will form a
real analytic variety. By the theory of Lojaciewicz [31], we can be sure
that that variety can be stratified into varieties of lower dimension. But
the geometry will be technically very complex. And the shapes of the
appropriate approach regions for Fatou theory will be correspondingly
difficult to calculate.

In fact no program of the sort just described has ever been carried
out in generality. Here is a brief description of what is actually known.
It can be shown that Theorem 6.6 of Stein is sharp in the case that 2
is strongly pseudoconvex. In the paper [36], Nagel, Stein, and Wainger
announced some results along these lines for smoothly bounded, finite
type domains in C2. Many of the technical details for their construction
appear in [37]. Some related ideas appear in [18] and [25]. The full
story has never been worked out. Some progress in the case of finite
type convex domains in C" has been made by Fausto di Biase and his
collaborators [8]. Other valuable references are [35] and [30].

In the next section we describe a broad approach that unifies the
theory for the disc, the ball in B”, strongly pseudoconvex domains, finite
type domains in C?, finite type convex domains in C”, and the other
types of domains described in the last paragraph. It depends on the use
of invariant metrics ([18]).
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Invariant metrics are both a useful and attractive device for studying
the boundary behavior of holomorphic functions. For one thing, one
would certainly like to know that the approach regions being defined
are invariant under biholomorphic mappings. This assertion is proved
in [41] for the original approach regions A,, but the arguments are of
necessity ad hoc just because the definition of the approach regions is
ad hoc. Checking that the approach regions defined in [36] are invariant
would be much more difficult. In fact they are known to be invariant,
because (by way of work of Aladro [1]) they are equivalent to the metric
approach regions described in [18], and those metric approach regions
are automatically invariant.

It is also the case that work of I. Graham [10] shows that there is (at
least in the strongly pseudoconvex case) a direct connection between the
intrinsic geometry of the Kobayashi/Royden and Carathéodory metrics
and the Levi geometry of the boundary. [One would expect a similar
connection to exist in the finite type case, but this correlation has not
been rigorously established.] Thus the development presented in the
present paper suggests that invariant metrics might be a useful language
for describing approach regions in Fatou theorems. They have also served
as a useful predictor for the shapes of approach regions in contexts in
which the appropriate theorem was not yet known. Finally, invariant
metrics have proved to be the right language in which to formulate the
Lindelof principle in several complex variables (see [5]).

8. Review of Invariant Metrics

We begin with a quick review of the two most important invariant
metrics for this discussion. In point of fact we shall only explicitly use the
Kobayashi/Royden metric in our applications in §§9 to Fatou theorems.
But we also present the Carathéodory metric just to round out the pic-
ture, and because the constructions in §§9 using the Kobayashi/Royden
metric can be made as well using the Carathéodory metric.

If O, Q» are domains in C" then, following Graham, we define Q;(2.)
to be the collection of all mappings from €5 to €2;.
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DEFINITION 8.1. If 2 C C"is open, then the infinitesimal Carathéodory
metric is given by Fi : @ X C* — R where

NG,
Fol€) = sup [f(2)e] = sup |30 2(2) -
JEB(Y) IeB@) |7 Zj
F(=x)=0 Ha=0 17

REMARK. In this definition, the C* in Q x C" should be thought
of as the tangent space to Q at z—in other words, Q x C” should be
canonically identified with the tangent bundle of Q at z. We think of
Fo(2,€) as the length of the tangent vector £ at the point z € 2. In
general, Fp(z,£) is not given by a quadratic form (g;;(z)), hence Fg is
not a Riemannian metric.

DEFINITION 8.2. Let Q C C” be open and v : [0,1] — Q a C? curve.
The Carathéodory length of v is defined to be

Lo() = / Fol(t),7'(2)) dt.

This definition parallels the definition of the length of a curve in a Rie-
mannian metric. It would be natural at this point to define the (inte-
grated) Carathéodory distance between two points to be the infimum
of lengths of all curves connecting them. One advantage of defining
distance in this fashion is that it is then straightforward to verify the
triangle inequality.

However we shall not take this approach. One of the most important
features of the Carathéodory metric is that it is, in a precise sense, the
least metric under which holomorphic mappings are distance decreas-
ing. The notion of distance suggested in the last paragraph is not the
smallest. It is fortuitous that the following definition does result in the
least distance-decreasing metric—in particular it does satisfy the triangle
inequality.

DEFINITION 8.3. Let Q@ C C" be an open set and z,w € ). The
Carathéodory distance between z and w is defined to be

C(va) = Ssup P(f(z), f(’l.U)),
feB(Q)
where p is the Poincaré-Bergman distance on B.

Notice that, depending on the domain €2, the Carathéodory distance
between two distinct points may be 0.
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DEFINITION 8.4. Let € C” be open. Let ¢; = (1,0,...,0) € C.
The infinitesimal form of the Kobayashi/Royden metric is given by Fk :
D xC"— R, where

Fig(z,€)
= inf{a : a > 0 and Jf € Q(B) with f(0) = z, (f(0)) (e1) = £/a}

—_ in L - 7 e iS acon nt mu i co
= f{l(f’(o))(el)l L f € UB), (£(0)(e1) stant multipl fé‘}
[4

- sup{|(f'(0))(e1)| : f € 2(B), (f'(0))(e1) is a constant multiple of £}

We now wish to define an integrated distance based on elements
of Q(B). The natural analogue for our definition of Carathéodory dis-
tance does not satisfy a triangle inequality. Moreover, we want the
Kobayashi/Royden distance to be the greatest metric under which holo-
morphic mappings are distance decreasing. Therefore we proceed as
follows:

DEFINITION 8.5. Let © C C™ be open and «v : [0,1] — © a piecewise
C! curve. The Kobayashi/Royden length of 7 is defined to be

Lg(v) = /01 Fx(y(t),7/(t))dt.

DEFINITION 8.6. Let 2 C C" be an open set and z,w € Q. The
(integrated) Kobayashi/Royden distance between z and w is defined to
be

K(z,w) = inf{Lk(y) : v is a piecewise C' curve connecting z and w}.

Recall that we did not implement a definition like this one for the (in-
tegrated) Carathéodory distance because we were able to find a smaller
distance that satisfied the triangle inequality. Now we are at the other
end of the spectrum: we want the Kobayashi/Royden metric to be as
large as possible, and to satisfy a triangle inequality as well. This defi-
nition serves that dual purpose.

We remark in passing that the use of the ball as a model domain when
defining the Carathéodory and Kobayashi/Royden metrics.is important,
but that choice is not unique. The theory is equally successful if either
the disc or the polydisc is used. However, in the current state of the
theory, it is essential that the model domain have a transitive group
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of automorphisms. See also [32], where developments related to other
choices of a model domain are presented.

ProPOSITION 8.7 (The Distance Decreasing Properties). If$y, () are
domains in C", z,w € 1,6 € C*, and if f : ) — $y is holomorphic,
then

F'(z,€) 2 F*(f(2), £(2)€) Fi'(2,€) 2 F2(f(2), £:(2)€)
Coy(z,w) > Co,(f(2), f(w)) Ko, (2,w) > Ko,(f(2), f(w))-

Proof. This follows by inspection from the definitions. Ol

CoROLLARY 8.8. If f : Q; — Qs is biholomorphic then f is an isom-
etry in both the Carathéodory and the Kobayashi/Royden metrics.

Proof. Apply the proposition to both f and f~1. O

COROLLARY 8.9, If Q; € 2 C C™ then for any z,w € §, any
¢ € C*, we have

F(2,6) > F(2,€) Fi(z,8) > Fi2(z,€)
CQ] (z,w) > Cﬂz(sz) Ko, (z,w) > Kﬂz(zyw)'

9. Invariant Metrics and the Fatou Theorem

The key idea in [18] is to define the approach regions for a Fatou
theorem by way of an invariant metric. For convenience, we specialize
now to the Kobayashi/Royden metric (although in many applications it
is useful to take another metric). Call it p. Fix a domain Q@ C C* with
smooth (at least C*) boundary. Let U be a tubular neighborhood of 99
and take ¢y to be one fourth of the distance of °U to 9. As usual, let vp
be the unit outward normal vector to 92 at a boundary point P € 9%.
Fix a number 8 > 0. If P € 99, then we let np = {P—tvp : 0 < t < ¢}.
We set

Ka(P) = {z € O p(z,ns) < B}.
As in the paper [18], there are a number of technical but plausible
geometric hypotheses about the metric p that must be put in place. We

shall not state these explicitly here. We further define a ball B(P,r) in
o) as follows:

B(P,r) =n({z € Ks(P) : dist(z,00) = r}.
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Here, as usual, “dist” denotes Euclidean distance. And 7 is Euclidean or-
thogonal projection to the boundary. We use the standard Carathéodory
construction (see [29]) to create a (2n — 1)-dimensional measure ¢ on 952
from the balls B(P,r). Our plausible geometric hypotheses guarantee
that these balls satisfy the enveloping property described in Remark (1)
following Definition 2.5. Thus we have equipped 91 with the structure
of a space of homogeneous type. Following (in broad strokes) the gen-
eral line of attack developed in this paper—with a number of technical
changes along the way—we are then able to prove the following theorem:

THEOREM 9.1. Let Q be a bounded domain in C* with C? boundary.
Let approach regions Kg be defined as above, and assume all the plau-
sible geometric hypotheses as previously indicated (see [18] for details).
Let f be an HP function on Q, and let f* be as usual. Then

li = f*(P for almost P e0Q.
Kﬂ(Pl)gri_’P flz) = f(P) or almost every

Now let us look at several examples to see what this theorem says in
cases that we already understand, and also what it says in a few cases
that we have not already considered.

ExAMPLE 9.2. Let @ = D, the unit disc in the complex plane. Fix a
number 3 > 0. The set of points with Kobayashi/Royden distance less
than g from the origin is d = D(0, [¢*® —1]/[e** +1]). The approach re-
gion Kg is then the union of the discs with centers a+140,0 < @ < 1, and
Kobayashi/Royden radius 8. Put in other terms, XCg is the union of the
images ¢(d), —1 < a < 0. Here the ¢, are the Mdbius transformations
defined in §§3.

To get an idea of what JCg(1+40) looks like, we calculate the trajectory
of the extremal point 0+ [e?” — 1]/[e?” + 1] on the boundary of d under
the Mobius transformations just indicated. Let r = [¢% — 1]/[e* + 1].
Then , )

—a(l+7%) Cir l-—a _
1+ a?r? 1+ a?r?

b ir) =
We see that
dolir) = —a +ir(l — a).
Remembering that a is real (and negative), we find that the real part
of ¢,(ir) has distance 1 — |a| from the boundary point 1 = 1+ 70 and

the imaginary part has distance (a constant times) 1 — |a| from the real
axis. This is the shape of non-tangential approach.
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In summary, the calculation just performed suggests that K on the
unit disc is the classical non-tangential approach region.

EXAMPLE 9.3. Let & = B, the unit ball in C*. We take n =
2 for convenience. Fix a number 8 > 0. The set of points with
Kobayashi/Royden distance less than 3 from the origin is b = B(0, [¢*’ —
1]/[e* +1]). The approach region K5 is then the union of the balls with
centers (o +10,0), 0 < & < 1 and Kobayashi/Royden radius 8. Put in
other terms, K is the union of the images &,(b), —1 < a < 0. Here

_ 2
@a(zl,ZQ):(zl a V1 az'g)_

1- az ’ 1-— azy
We will now do an analysis that suggests the shape of Kg((1,0)). As
before, we set 7 = [¢%# — 1]/[e* + 1]. Now a straightforward calculation
shows that the image of the extreme point (0,47) under ®, is

(a ’ M(rza-f-ir)) .

1+ a?r?

The main thing to notice now is that the first entry has distance 1 — |a]
from the point (1, 0), while the second entry has size essentially v/1 — a2.
This is the shape of admissible approach.

In summary, our calculation indicates that Kz is an admissible ap-
proach region.

ExAMPLE 9.4. Let 2 C C” be a strongly pseudoconvex domain with
C? boundary. Fix a point P € 00 and define K3(P) as usual. Then
the results of [10] and the calculations in [1] show that this approach
region Kg is comparable to the approach regions defined by Stein in
[41]. In particular, it is non-tangential in the complex normal directions
and parabolic in the complex tangential directions.

It can be shown that if {2 C C” is some smoothly bounded domain
and P € 9Q is not strongly pseudoconvex then the approach region
K will always be strictly larger than the parabolic approach regions of
Stein. Some of the examples below will explore what can happen in such
a case.

EXAMPLE 9.5. Let Q C C? be a finite type domain with C® bound-
ary (see [14] for a detailed treatment of the concept of finite type). It
is important for this example that n = 2. Fix a point P ¢ 8Q—say
that P is a point of type m, which says in effect that P is flat to order
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m (in a complex-analytic sense) in complex tangential directions. Then
the approach region Ks(P) will be comparable to the approach regions
defined in [36]. [In fact [36] gives three equivalent definitions of these
approach regions.] The details of this equivalence follow from the main
results of [3] and the calculations in [1].

In particular, the approach regions Kg in this setting are non-tangential
in complex normal directions and have aperture of the shape y = 2™ in
complex tangential directions (see Figure 6). Of course, as previously
indicated, the actual shape of the region will vary in a subtle semi-
continuous way as P moves about the boundary.

Figure 6

EXAMPLE 9.6. Let Q@ C C" be a domain with C? boundary. Let
P € 99 be a point of strong pseudoconcavity. The Kobayashi/Royden
metric near such a point is well understood (see [20]), and the approach
region Kg(P) may be seen to contain a full neighborhood B(P,r) N .
Thus one expects a Hardy space function to have an unrestricted limit
at such a point.

Of course the result described in the last paragraph is no surprise,
because the Hartogs extension phenomenon (see [14]) tells us that any
holomorphic function will continue analytically to a full neighborhood
of P. In particular, it will be continuous up to P. So of course such a
function will have a limit from any direction at P.
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EXAMPLE 9.7. Let Q@ C C” be a convex domain of finite type in any
complex dimension. Then the results of [33] can be used to estimate the
size of the approach regions 4. This program has yet to be carried out.
F. di Biase (8] has done some related work.

ExXAMPLE 9.8. The Carathéodory construction of measures can be
used with different exponents to create boundary measures that measure
sets of differing dimensions. In particular, these measures can be used to
detect lower dimensional sets on which bounded holomorphic functions
have boundary limits. For example, the fcllowing remarkable result of
Nagel and Rudin [34] can be recovercd by using the one-dimensional
measure that can be constructed from our metric ideas in this way:

TuEOREM: Let  C C" be a bounded domain with smooth
boundary. Let vy : [0,1] — 0§ be a smooth curve with the
property that each of its tangent vectors is transverse to the
complex tangential directions. If f € H*(Q) then f will have
a (suitable) limit at almost every point of v. Here “almost
every” is measured with respect to arc-length measure.

There is still much to be learned about lower dimensional phenomena
and boundary limits of holomorphic functions.

10. Concluding Remarks

The results described in §§9 offer considerable evidence that it is nat-
ural to formulate the ideas of harmonic analysis on a domain in C" by
way of invariant metrics. Especially because each domain has its own
analysis—depending on the Levi geometry of the boundary—it is natu-
ral to enlist invariant metrics as a tool both in formulating and proving
results. Again, the theorem of Graham [10] shows that boundary Levi
geometry and intrinsic Kobayashi/Royden geometry are two sides of the
same coin.

The paper [25] indicates how results about the Lusin area integral
may be related to invariant metric considerations. The papers [21]~[23]
give other examples of metric considerations in multi-variable complex
function theory. Certainly the very function spaces that we consider
should be adapted to the domain under study, and invariant metrics
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should prove to be the right tools for understanding these spaces. Inter-
polation theorems, characterizations in terms of derivatives, and bound-
edness of Hankel, Bergman, Szegd and other canonical operators ought
to be studied by way of canonical constructions—particularly invariant
metrics (see some of the suggestive evidence in [26], [27]). We hope that
this paper will serve as an introduction to the geometric point of view
in the harmonic analysis of several complex variables.
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