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ON PURE-STRATEGY
EQUILIBRIA IN MATRIX GAMES

TAE-HWAN YOON AND O-HuNn KwoON

ABSTRACT. In this paper we find a sufficient condition to guarantee
the existence of pure-strategy equilibria in matrix games. In the pro-
cess of formulating our condition, the alternative theorem of Farkas
is used. The formulated condition is necessary and sufficient to the
existence of pure-strategy equilibria in undominated matrix games.

1. Introduction

The minimax theorem of a matrix game was first developed by von
Neumann [8] in 1928 using Brouwer’s fixed point theorem. Dantzig [3] in
1956 proved this theorem via linear programming in a constructive way
leading to a computational algorithm. Panik [6] in 1994 proved the mini-
max theorem using the specialization of the alternative theorem of Farkas
which involves the expression of one vector as a convex combination of a
set of vectors.

We analyse an equilibrium point in mixed strategies to get the situ-
ation in which an equilibrium point in mixed strategies simultaneously
becomes an equilibrium point in pure strategies. We find a sufficient con-
dition to guarantee the existence of an equilibrium point in pure strate-
gies. Our sufficient condition is formulated using the alternative theorem
of Farkas [5]. Furthermore, in case of a undominated matrix game, our
condition is necessary and sufficient to the existence of an equilibrium
point in pure strategies. Therefore this paper presents a condition for the
existence of an equilibrium point in pure strategies, and conversely, this
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condition is always satisfied by entries of matrix whenever there exists
an equilibrium point in pure strategies.

2. Preliminaries

Let I'4 be an (m x n) matrix game, where A = (a;;) , ai; > 0. Denote
A! the transpose of A, a’ (respectively, a;) the column (respectively, row)
vector of the matrix A, and x-y the inner product of vectors x and y. Let
1,=(1,1,---,1) € R™ and 0,, the zero vector in R™. For convenience,
we denote x > b if z; > b; for all i (1 <7 < n).

The following is the fundamental theorem of game theory by von Neu-
mann [8].

THEOREM 1. (Minimax Theorem) A matrix game I'4 has an equilib-
rium point in mixed strategies.

Given an m-vector b and an n-vector ¢, we have the following two
problems called dual linear programs in standard form.

Primal: Minimize x-b

subject to xA > ¢, x > 0y,.
Dual: Maximize c-y

subject to Ay <b, y > 0,.

Any x satisfying constraints of the primal is called a feasible solution
to the primal. A feasible solution to the dual is similarly defined. Here
x-b and c -y are called objective functions for the primal and dual.

The following is a version of the fundamental theorem of linear pro-
gramming due to von Neumann [2].

THEOREM 2. (Duality Theorem) If the primal and dual problems
have at least one feasible solution, then two problems have optimal solu-
tions. Furthermore, at any optimal solution, the value of two objective
functions coincide.

Indeed, the duality theorem and the minimax theorem are equivalent
[2]. Thus the solution algorithm of the minimax theorem can be described
as follows {3]. First, we find objective functions X - 1,, and 1, - ¥ for the
following primal and dual problems.
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(1) Primal: Minimize x-1,,
subject to xA > 1,, x> 0,,.
(2) Dual: Maximize 1, -y

subject to Ay <1,, y > 0,.

Second, we set

. X
* Tz,
and _
v =Y
1, - y
Then (x*,y*) is an equilibrium point in mixed strategies.
Consider the mixed strategy x* = (x1,29, -+ ,Z;), Where zx = 1

for some k and z; = 0 for ¢ # k. We can identify x* with the ith
pure strategy of player 1. Similarly, we can identify the mixed strategy
Y = (U1, %2, - ,Yn), where y = 1 for some k and y; = 0 for j # k, with
the #th pure strategy of player 2.

We have an equilibrium point in pure strategies if the sets of optimal
strategies of player 1 and 2 include the pure strategies of player 1 and 2,
respectively.

The following is the alternative theorem of Farkas [5].

THEOREM 3. (Alternative Theorem) For each (m x n) matrix A and
each vector b in R",
either
(A) Ax<0,,, b-x>0 has a solution xy € R"
or
(B) A'y =b, y > 0,, has a solution y, € R™
but never both.

We may rewrite the above theorem as follows,

either
(A) a;- %<0, b-xg>0fori=1,2,---,m
or
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(B) Y awi=b, y; = 0fori=1,2---,m
i=1
but never both.

Additionally, the alternative theorem can be described as follows by
changing the role of column vectors and row vectors.

THEOREM 4. For each (m X n) matrix A and each vector c in R™,

either

(A) xA <0,, x-c >0 has a solution xp € R™
or

(B) yA*=¢, y > 0, has a solution y, € R"
but never both.

We need the following definition. The p-th strategy of player 1 domi-
nates the ¢-th strategy of player 1 if
ap; > ag for j=1,2,---,n
and
apk > g for some k € {1,2,--- ,n}.
Similarly, the p-th strategy of player 2 dominates the ¢-th strategy of
player 2 if _
ap <agfori=1,2,---'m
and
axp < agq for some k € {1,2,--- ,m}.
T4 is called a undominated matriz game if all strategies of player 1 are

not dominated relative to each other and all strategies of player 2 are not
dominated relative to each other.

3. Main Theorems

Denote
R? = {(z1,z9,- - ,xp) 12z <0fori=1,2,--- ,n}
and
_ R} = {(z1,22,- -+ ,2n) 12, >0fori=1,2,--- ,n}.
We use a version of the alternative theorem of Farkas (Theorem 4) in
Preliminaries to get the following Lemma.
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LEMMA 1. For the existence of a solution xo in R™ of the system

xA € R" U {0,}
x-1,>0,

it is necessary and sufficient that
4) 1, ¢ cone{a’ : 1< j<n}

where cone{a’ : 1 < j < n} is the cone generated by column vectors a’
of A.

Proof. We may rewrite Theorem 4 as follows,

either _
(A) %x9-a’ €0, Xp-¢>0 forj=12,---,n
or

(B) En:yjaj =c, y; =0 forj=1,2,---,n
but never i)zolth.
Now assume that there exists a solution xg in R™ of the system
{xA € R" U{0,}
x-1,>0.

We replace ¢ by 1, € R™ in conditions (A) and (B). Then there exists
no solution yp of the condition (B). This implies that there is no yo €

R" U {0,} such that
n
lm = Zyjaj.
=1

Thus
1, € cone{a’ : 1< j <n}.
Conversely, assume that (3) is satisfied. Then there is no yo € R} U

{0,} such that
n
lm = Zyja]
=1
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This implies that there exists no solution yj of the condition (B). There-
fore we can find a solution xg of the condition (A). Hence there exists a
solution xp in R™ of the system

xA € R? U {0,}
x-1,>0.
This completes the proof. O

Now we formulate a sufficient condition for the existence of an equi-
librium point in pure strategies for a matrix game.

THEOREM 5. For the existence of an equilibrium point in pure strate-
gies in T, it is sufficient that there exist a solution xo in R™ of the
system

(5)
and a solution yg in R" of the system

Ay € R?U {0}
(6) {ln -y < 0.

xA € R* U {0,}
x-1,>0

Proof. Assume that there exists a solution xy in R™ of the system
{xA € R" U {0,}
x-1,>0.
By Lemma 1, this implies that
1, ¢ cone{a’ : 1 < j <n}.

For our proof, we exclude dominated columns in the solution algorithm
in Preliminaries. For this, we define

aij; = minf{a;; : 1 < j <n}

for each i. That is, a;; is the entry of i-th row and j;-th column having
the smallest number for the i-th strategy of player 1. Then we have

1,, ¢ cone{a’ : 1 <i<m},
since ‘ _
cone{a’ : 1 <i<m} Ccone{a’:1<j<n},
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where a’ is the j;-th column vector. This implies that there exists a pure
strategy in the set of solutions for the primal problem (1) in Preliminaries.
To show this, we can rewrite (1) as follows.

m
(M Minimize in
i=1
m
subject to inaij >1forj=1,2---,m,
i=1
;>0 fori=1,2,---,m.
Let X = (1,72, -+ ,Zm) be an optimal solution for the minimization
problem (6). The column vector @’ = (ayj,ag;, - ,0m;) is the normal

vector of the equation

m
E 0ij%; =1
i=1

at the point X for j = 1,2,--- ,n. Consider the point X as the origin in
R™. Then we have the cone

cone{a’ : 1< i < m}

generated by column vectors a* having the point X as the origin. If the
vector 1,, at the point X is not in the cone generated by column vectors
a’ X is an extreme point of the feasible region of (6) on the k-axis for
some k. Then T = 1 and T; = 0 for 7 # k. Therefore there exists a pure
strategy in the set of solutions for the primal problem (1).

Hence the existence of an optimal pure strategy for the first player
is guaranteed. A similar argument applies for the second player but
for using the dual problem (2) in Preliminaries. This completes the
proof. |

In a undominated matrix game, the converse of Theorem 5 is also
valid.

THEOREM 6. For the existence of an equilibrium point in pure strate-
gies in a undominated matrix game 4, it is necessary and sufficient that
there exist a solution xg in R™ of the system (4) and a solution y; in R"
of the system (5).
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Proof. We have only to show the necessity (sufficiency: by Theorem
5).. Assume that there exists an equilibrium point in pure strategies.
Then the set of solutions for the primal problem (1) in Preliminaries
includes a pure strategy.

Let X = (Z1,T2," '+ ,Tm) be an optimal pure strategy. Then it follows
that Z; = 1 for some k and Z; = 0 for 4 # k. Thus, since any strategy
of player 1 is not dominated by another, the vector 1,, at the point X is
not in the cone generated by column vectors. That is,

1, ¢ cone{a’ : 1 < j <n}.

This implies the existence of a solution xo in R™ of the system (4) by
Lemma 1. The same for the second player but for using the dual problem
(2), that is, there exists a solution yo in R™ of the system (5). This
completes the proof. O

We combine Theorem 6 and Lemma 1 to get the following Proposition.
ProPOSITION 1. For the existence of an equilibrium point in pure

strategies in a undominated matrix game T4, it is necessary and sufficient
that there does not exist

(81,82, ,8,) € R} U {0}

satisfying
17 [a11] fai2] [ a1n ]
1 az ag G2n
=s;| - | +s| - |+ +sn
[ 1] | &1 Ladm2 ] | Omin

and there does not exist

(tlatZ: e )tm) € RT U {Om}
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satisfying
(17 (a1 ] (@2 (Gm1 ]
1 a2 a )
= tl . 4 t2 . + .- + tm
1] [ O1n. | Gon | LGmn.
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