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GENERALIZED SOLUTION OF TIME
DEPENDENT IMPULSIVE CONTROL SYSTEM
CORRESPONDING TO VECTOR-VALUED
CONTROLS OF BOUNDED VARIATION

CHANG EON SHIN AND J1 HYUN Ryu

ABSTRACT. This paper is concerned with the impulsive Cauchy
problem where the control function u is a possibly discontinuous
vector-valued function with finite total variation. We assume that
the vector fields f,g;(i = 1,--- ,m) are dependent on the time vari-
able. The impulsive Cauchy problem is of the form

#(t) = f(t,2) + ) _gi(t,2)u(®), t€[0,7), =(0)=z€R",

i=1

where the vector fields f, g; : R x R® — R™ are measurable in ¢ and
Lipschitz continuous in z. If g;’s satisfy a condition that

> lgiltz, z) ~ gi(t1,7)| < d(t2) — Blt1), VY <tp,z €R",

i=1

for some increasing function ¢, then the input-output function can be
continuously extended to measurable functions of bounded variation.

1. Introduction

Given vector fields f, g;(¢ = 1,--- ,m) defined on R x R", consider
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the time dependent impulsive control system with initial value

(1.1,) () = f(t,z) + Y gilt,@)ui(t), t€[0,T),

i=1
(1.12) z(0) = € R™.
where - = 4 and u() = (w1, ,Um)(-) is a vector-valued control
function. Assume that vector fields f and g;’s satisfy the following

assumptions:
Al. There exists M > 0 such that for any (¢,z) € R x R",

Ifta)l <M,  lgt2)| < M.

A2. For each z € R™, the map t — f(t,z) and t — g(t, ) measur-
able, g; are C* w.r.t z and there exists L > 0 such that forany t € R
and z,y € R",

f(t,2) — ft.y)l < Lo —yl, lg:t,z) — g(t,9) < Llz —yl.
A3. There is an increasing function ¢ defined on [0, 7] such that
m
Z |gs(t2, @) — gi(t1, )| < B(t2) — B(t1), Vt1 <tz,z €R™.
=1

By possibly replacing ¢ with

0 ift <o,
dt)=4{ 1+t+¢(t) HO<t<T,
2+T+¢(T) ift>T,

it is not restrictive to assume that
$(0+) — 6(0—) 21, $(T+)—p(T-) 21, ¢(t) 21 ae.
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Generalized solutions of time dependent

For K > 0, let

Sk = {u = (u1,--+ ,um) : [0,T] —» R™| each u; is a piecewise
constant function such that u is right continuous, the discon-
tinuities of do not happen at the discontinuities of ¢ and the
total variation of u is less than or equal to K}.

For a C'— control function u, we write by z,(-) the Carathéodory
solution of (1.1), that is, z, is an absolutely continuous function and
satisfies (1.1) a.e. In §2, depending on the canonical graph completion
of u ([4]) which provides a definition of generalized solutions for an
autoncmous impulsive control systems corresponding to vector-valued
control functions of bounded variation, we define a generalized solution
z(u,t) of (1.1) corresponding to u in Sk. In Theorem 1.1, we show
that 4 : u — x,(t) is Lipschitz continuous on the set of C1— functions
whose total variations are uniformly bounded and by the continuity of
1, we can define the generalized solution z(u,t) of (1.1) corresponding

to a measurable function u having total variation less than or equal to
K.

THEOREM 1.1. We assume Al, A2, and A3. There exists M > 0
such that for any vector valued C'— control functions u,v whose total
variations are less than or equal to K

_ T
(1.2) |eu(T) — o(T)| < M /0 fu(s) — v(s)ldd(s).

Inequality (1.2) makes it possible to extend the map v — z(u,T)
continuously to discontinuous controls of bounded variation and define
the corresponding generalized solution of (1.1).

DEFINITION 1.2. Let f and g;’s satisfy A1, A2, and A3. For a mea-
surable control function u having a finite total variation, a generalized
solution z(u,t) is defined as the limit of the Carathéodory solutions of
(1.1) corresponding to C'— control functions u,, which converge to u
in L'(d¢), that is, if {u,} is a sequence of C1—functions tending to u
in L' (dg),

z(u,t) = nh_)ngo Ty, (t).
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2. Definition of Generalized Solution Corresponding to Step
Functions

The aim of this chapter is to define the generalized solution z(u,t)
corresponding to u € Sk of (1.1) depending on the definition of the
generalized solution for the autonomous impulsive control system in

[4]-

Denote by e® 2i=1i9i(t) z the value at time s of the Cauchy problem

L =Y b)), wO)=2

i=1
and in particular, at s = 1, we write
éz:?:l eigl(t)z — el 2:’;1 Eigi(t)Z.

Let s — ®(s, Y i, €igi(t), z) be the fundamental matrix solution of the
linear system

m
’U(S) = Dm Zeig‘i(ta e° Z::'l E,-g;(t)z) : ’U(S),

i=1

where D (3"7", €:9i(t,)) is the Jacobian matrix of the first derivatives
of the map z — 3 i+, €igi(t,x) and (0, Y1, €:g:(t), 2) is the identity
matrix.

Let u € Sk. For t € [0,T], let V(¢) be the total variation of u on
[0,]. Since the function ¢ — ¢+ V(¢) is right continuous and strictly
increasing, for every s € [0,7 + V(T')], there is a unique ¢ = ¢(s) such
that

(2.1) s<t+ V), t+V(E)<s, VE<t.

Write
u(t) = lim u(), V~(t)= lim V(%),
t—t— t—t—

W) =t+V(t), W (t)=t+V~(t).
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We recall the canonical graph completion defined in [4]. The canonical
graph completion is the map ¢ = (po, - ,m) : [0, W(T)] — [0,T] x
R™ defined by ¢(s) = (t(s),v(s)), where t(s) is defined in (2.1) and

v(s) is u(t(s)) if u is continuous at t(s), while v(s) = —Ws-(-#%u(t) +
Wi(t)—-s

W=y v (t) if the jump of u occurs at ¢ = t(s). The above map ¢
is Lipschitz continuous with Lipschitz constant 1.

We write the characteristic function on I by x;. For u € Sk, if
u= Zf=1 diXIi, where I = [ti—l)t'i) fori= 1’ coe ak - la I = [tk——latk]
and 0 = #p < -+ < tx = T, we say that ZLI dix1, is a standard
representation of u. Choose ¢; in (t;—1,t;) fori=2,--- ,k — 1 and put
¢1 = 0,¢c, = T. Write J; = [¢;,¢i41) for i =1,--- [k —2 and Jx—1 =
[ek—1,T). Let ¢ = (0, - - , Pm) be the canonical graph completion of
andfori=1,---,k, let each 7, be a point in [0, T+V (T')] with @o(7%) =
ck. Write J! = [, 7it1), (¢t =1,--- Jk—2) and J}_; = [1k—1, 7k}

Note that on J;, the system

(2.2) &= f(t,x)+ ) g;(t, o)
=1

is equivalent to

(2.3) &= ft,z)+ > _ gjts, x)its
j=1

since %; = 0, on J; \ {t;}.

If z(¢;) = =z; is given, then we can define the generalized solution
z(u,t) of (2.3) corresponding to u on J; as z(u,t) = y(pd (s)), where
@5 (s) = max{s : t = po(s)} and y(s) is the solution of the Cauchy
problem on the interval J;,

2 4() =Fp0(s), () 200() + D 95086, 9(5)) 31 (5),
(24) S S =1 S

s€ Ji,) y(Ti) =Z;.

Hence we define the generalized solution z(u,t) on [0,T] corresponding
tou € Sk.
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DEFINITION 2.1. For u € Sk. Let y(s) be the Carathébdory solution
of the Cauchy problem

s &) =T UON T+ 30yt (oD g0s(s)
. i=1
SEJ,{,(i=1,---,k—1), y(0)=:7:,

where ¢ is the canonical graph completion of u. The map ¢ — z(u,t)
defined by z(u,t) = y(pg (s)) is called the generalized solution corre-
sponding to u of the Cauchy problem

(2.6) & = f(t,x) + ‘Zj gt n)i;  z(0) =%,

i=1
where ¢f (s) = max{s : t = po(s)}.

Depending on the above definition, we claim that (1.2) holds for
u,v € Sk and for u,v € C! in the main theorem, and deduce Definition
1.2.

For u € Sk, by the above definition, z(u, -) is right continuous and
for any ¢t € [0,T] write z(u,t—) = lim,_,;— z(u,s). The left and the
right limits of the generalized solutions are uniquely determined and
satisfy the property (2.7).

ProprosITION 2.2. For u € Sk, let Ef=1 d;x1, be a standard repre-
sentation of u for someQ =ty < --- <ty =T. Foreachj=1,--- ,k—1,

(2.7) r(u, t;) = Xim ()=t )9t gy, t;—).

Proof. Let ¢ = (o, ,¥m) be the canonical graph completion of u
and let y(s) be the solution of (2.5) corresponding to ¢. If t;+V~(t;) =
s and t; + V(t;) = sg, then

S2 —81 = W(t.‘i) - W(tj_)? m(u,tj) = y(32)’ x(u, tj_) = y(sl)
and
(2.8) 2(u,t;) — z(u,t;~) = y(s2) — y(s1)-
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Observing that on the interval [sy,s2], @o(s) = ¢, d%cpo(s) = 0 and
Loi(s) = ——I_—vs:((f:))::v,‘(g,))’ for any s € [s1, s3]

s m d
@9 v -ve) = [ Y altiun)pitrldr

1 =1

Define 2 map z : [0,1] — R” by z(0) = y(s1 + o(s2 — s1)). By (2.9),

(210)  2(0) = Y oy 20N ilts) ~ ui (1)), 2(0) = y(s1)

i=1
and
2(1) = éz::'.’;l(u‘i(t.’i)_ui—(t]'))gi(tj)z(()).
Since 2(1) = y(s2) and 2(0) = z(u, t;—), (2.7) holds. O

3. Some Lemmas

Denote by /(") z the value at time 7 + s of the Cauchy problem
£(t) = f(t,2(t), (1) =2z

To prove the main theorem, we need to prove inequality (3.1). To do
this, we need:

LEMMA 3.1. For any oy, t; € [0,T] and0<s<t<T, let
v(t) = B(t, Y, €igi(t1), €7 Oz) f(0q, 871 O).
(5) [o(t)] < MeSTaledn®sT,
(1) [o(t) = o(s)] < [t — o] S, ealn? LMeE s e,
Proof. (i) Observing that

d i m
a—t-lv(t)l < IDm Zeigi(tl, et Y eigi(tl)é’a'lf(o):i) . v(t)l

i=1

m
<> leiln®Liv(t)],
i=1
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by Gronwall’s inequality, we have

()] < (01,82 Oz)]eZiEn et LT
S MeZi=1 |e.'|n LT'

)

t m .
lv(t) — v(s)| = / D, Eb‘igi(h,e"zy;‘ Eigiéo'lf(lo)j) -v(o)do

=1

/ Z|e |n2 LM ez &InLT g

<t o) S edn LMEER LT,

i=1

a

LEMMA 3.2. There exists a positive constant C such that for any
0<t1<t2<T,fi€Rn, andlSiISK,iz:l’... ,m,

lé’(tz—tx)f(t.l)ézzgl gigi(ti) g _ ézﬂl Eigi(tz)é‘(tz—tl)f(tl)jl
(3.1) m
< CZ leill@(t2) — d(t1)].

i=1
Proof. Let 0 < t; < ta < T,Z € R" and |&] < K, i = 1,-
Note that
|‘e'(t2—t'1)f(t1)é2:"=1 gigi(t) 5 _ g1 Eigi(t2)é(t2—t1)f(tl)f|
< |e(t2—t1)f(t1)ez, 168tz _ g2 5igi(tl)é’(t2—t1)f(tl)j|
+ |eE.-=1 e:gi(t1) glta—t1)f(t1) 3 _ 5220 Eigi(t2)é(t2—tl)f(t1):'c‘|

= FEy + Es.

(3.2)

We show that there exists C1,C2 > 0 such that

E; <Gy leillé(te) — d(t1)], i=1,2.

i=1
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Define a map h : [0,7] x [0,1] — R" by

h(0’1, 0.2) - ‘édx.f(tl)edz Yimiegi(tl) g _ oo2 p D Eigi(tl)éalf(tl)j.

We have

6_h =f(t; + 01, go1f(t1) go2 232 EiQi(h)j;)

60‘1
m
— & (0-2’ Z Eigi(tl), é'alf(h)f) f(o1, éalf(tl)a-:),

i=1

and by Lemma 3.1,

—(01,02) - —(01,02')

< 1f(t1 + 01, go1f(t1) go2 >, e.-g.-(tl)j)
_ f(tl —+ o1, éUlf(tl)eﬂzi Z:’;l E"gi(tl)a_:)l

l Oh Oh

m
+ |®(o2, Z £:9:(t1), éolf(tl):z)f(al’ 'émf(tl):z,)

=1

_ q)(az’, Z Eigi(tl), é’alf(tl)j)f(o-l’ é’alf(tl)j)l

=1

< Lléalf(tx)edz Yt Eiglt) g — é‘ﬁf(tl)eo'z' ™ Eigi(tl)j';l
m
m Am2
+ |og — 02| E lei|n? LM ez lesIn”LT
i=1

m
< |0_2 _ 0'2’| Z |Ei|LM(6LT +nZeZ;’_‘__1 |e,-|n2LT)_

i=1
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Since h(0,1) =0 and £&(r,0) =0 for any 7 € [0, ],
h(ty — t1,1) = h(ty — t1,1) — h(0,1)

ta—t) 6h
9B 1 1)d
/0 301(T )dr

to—11
< [Ty 2
0

1) - —(7,0
2
< |tz — 4] E |ei| LM (eXT + n2eiz leiln LTy,

dr

60’1

i=1

Hence

(3.3) |E1| < C1 Y lellg(ta) — o(t1)),
i=1

where Cy = LM (elT + n2emKn’L),
Next, we show that there exists C2 > 0 such that

|B2| < C2 Y lesllb(tz) — B(ta)]-

i=1

Let zo = é(t2t1)f(t1)z and let each'z;, (j = 1,2) is the solution of the
Cauchy problem

&= egi(t;,z), =(0) = 2o.
i=1
Then |Ez| = |z1(1) — z2(1)]. Since
|1 — 2|

m m
> eigi(ti, @) — > eigiltz, 22)
i=1 i=1

+

m m
> eigilts, @) - Y eigi(ta, @)
i=1 i=1

m m
Y eigilta, z1) - > eigilts, z2)
i=1 i=1

<Y lesllg(ta) - st + Y leilLlzz ~ 2al,
i=1

=1
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by Gronwall’s inequality,

1 m
a0 = ea(0] < [ 3 lilotes) - gt)fel? it

=1

(34 -
=Cy Y _ lesllg(ta) — 8(t1)],
i=1
where Cy = e™XL. By (3.2), (3.3) and (3.4), lemma holds with C =
C1 + Cs. d

4. Proof of Theorem 1.1

We show that inequality (1.2) holds for u,v € Sk and then show
that it holds for C*—functions u, v. Let

N

u(t) = (u1, -+ yum)(t) = Z(ai,l, e Qim )X (1)

i=1

N
’U(t) - (’Ul, te ,’Um)(t) = Z(:Bi,la ot ,,@i,m)XI; (t)’

where I; = [ti—1,t),i = 1,--- ,N =1, Iy = [tn-1,tNn], and O =
to<---<ty=T.Fort=1,--- , N—landj=1,---,m, put
kij = aiy1,5 — @i j, 8i5 = Biv1,5 — B
andfori=1,--- ,Nand j=1,--- ,m, put
Li=ti—ti1, dij = a;j; — Bij-

Foreachi =1,--- ,N—-1,j =1,--- ,m, |k ;| < K, |s;;| < K. By
Proposition 2.2, the solution z(u,t) of (1.1) corresponding to u at the
points of discontinuities satisfies

o(u, t;) = ei=r (4 (ti)"uj_(ti))gj(ti)x(u’ ti—).
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By Definition 2.1, z(u, T), and z(v,T) can be written as
x(u, T) = éle(tN—l)éE;';l kn-1,:9i(tN-1),
gin-1f(tn-2) ... glaf(t1) g, kl,igi(tl)éllf(to)a—:’
and
z(v,T) = ginF(EN-1) gy sN-1,i9i(EN—1)

gin-1f(tn=2) .. glaf(t1) gXili81.49i(t1) gh f(to) 3,

By Lemma 3.2 and following similar computation of the proof of The-
orem 2.3 in [12], there exists M > 0 so that

: _ T
l2(u, T) — 2(v, T)| < M /0 fu(s) — v(s)|dd(s)-

Next we claim that inequality (1.2) holds for C!—functions u,v
whose total variations are bounded by K. Suppose that for any u € C?,
there exists a sequence {u,} in Sk such that u, — u in L'(d¢) and
T(tn, T) — 2,(T) as n — oo. For u and v € C?, we have sequences
{u,} and {v,} so that u, — u,v, — v in Ll(dd)) Z2(un, T) — z4(T)
and z(v,,, T) — z,(T) as n — oo. We thus have that for any n € N

|zu(T) — 2(T)|
< |2u(T) — 2(un, T)| + |24(T) = 2(vn, T)| + |2(tn, T) — z(vn, T)|
< |2u(T) — 2(un, T)| + |2o(T) — 2(vn, T |

T
+ 1t /0 fun(s) — vn(s)|dé(s)

and take n — oo to get

_ T
l2u(T) — 24(T)| < 3 [ [u(s) — v(s)|dg(s).
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Hence we only have to show that for any u € C1, there exists a sequence
{un} in Sk such that u, — u in L*(d$) and z(un,T) — z.(T) as
n — 00. :

Let u : [0,7] — R™ be a continuously differentiable map and let
{un} be a sequence of piecewise constant maps on [0, T] such that u,
converges uniformly to v and the total variations of u, are uniformly
bounded by K. There exists K; > 0 so that for any t € [0,T], |4(t)| <
K;. Write u,, = Zi(znl) dnkXI,, Where I = [tnk—1,tnk) for & =
1,-.- ,6(’”) — 1 and In,6(n) = [tn,é(n)—lvT]a and 0 = thpo < tp1 <
e < tpsn) = T. Choose ¢,k in (tn,k—l,tn,k) fork=2,---,6(n)—1
and put cp1 = 0 and cp5m) = T. Write Jox = [CnksCnkt1) for
k=1, ,5('”) — 2 and Jn,é(n)—l = [cn,é(n)—l, cn,&(n)]- Let "l"’n(s) =
(48(s), ¥n(s)) € R™! be the canonical graph completion of u,, where
¥n(8) = (Yi(s), - ,¥™(s)). Then 9, are Lipschitz continuous with
constant 1. For k = 1,---,48(n), let 7, be a point in [0, S,] with
Y2 (Tn,k) = Cnk- If ¥y, is defined on [0,S,] C [0,T + K], by defining
Yn(s) = Yn(sn) for s > s,, we may assume that 1, are defined on
[0, T+K]. Write J;, ; = [7i,Tiy1) (i = 1,--- ,6(n) — 2) and J, 5,1 =
[7s(n)—1, T + K]. If z»(un,t) is the generalized solution of the Cauchy
problem

(4.1) z=f(t,x)+ igi(t, T, z(0) =2,

=1

then it is the generalized solution of the Cauchy problem

&= f(t,x)+ Y giltk, T)in,

i=1

te€Jor, k=1,---,6(n)—1, =z(0)==z.

(4.2)

Let y,, be the Carathéodory solution of the Cauchy problem.

4

(43) dsyn(S) - f(¢2(8)’yn(s))%¢g(s) + Zgi(tk’ yn(S))%’l/)i(s),

i=1

s€dpp k=1,---,0(n)—1, y.(0)=2.
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Due to the Lipschitz continuity of 1,, with Lipschitz constant 1,

(4.4) lggyn < M(1+mM).

Let Z,, be the Carathéodory solution of the Cauchy problem

:.in = f(t,:in) + zgi(tkai'n)a(t)a
=1

tEJn,ln k=17"',6(n)—1a :‘1',‘(0)=1—2

(4.5)

and let Z be the Carathéodory solution of the Cauchy problem.
(4.6) &= f(t,8)+ > et Bud), =z(0)=3z
i=1
Put §(s) = n(¥3(s)) and Gn(s) = (B1(s)," -+ , @R (5)) = u(¥](s)).

Then @, is Lipschitz continuous with constant K; and g, (s) satisfies
the ordinary differential equation

2 5(5) = SR () t5) + D (e () 3o PH(6),

i=1
s€dpy k=1,---,6(n) -1, 7.(0)=2.
The theorem is proved by showing that

(4.7) Jim |Zn(t) — Z(t)] =0 for any t € [0,T]
and

(4.8) nl_ir>noo |#n(8) — yn(s)| =0 for any s € [0,T + K].

Since u is uniformly continuous and wu,, converges uniformly to u, we
may assume that for any € > 0, there exists n(e) € N such that |u,(s) —
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u(t)] < € whenever n > n(e), and s,t € Jok,k € {1,-++,8(n) — 1}.
Thus for any € >0, n > n(e) and s € [0,T + K],

(4.9) [$n(s) = @n(s)| < e.

Moreover since ¢ is an integrable function by choosing u, so that
max{tn,r —tnkr—1:k=1,---,8(n)} are sufficiently small, we may as-
sume that ¢,(t) — ¢(t) in L!(dm), where ¢,(t) = 6(") ! (k)X T s
and dm is the Lebesque measure. We claim that (4 7) holds. Let
n 2> n(e) and ' € Jn x. For simplicity, we may assume that ¢’ = ¢, k.
We compute a bound for |Z,(t') — Z(t')| to get

Ea(t) — &(t)] < / | En(t)) — F(t E(0)))de

+Z -/ 3 lou(ty, 2a)) — (e, 5O) Ol

ng—

—El + EZ,

where E; < fot’ L|Z,(t) — Z(t)|dt and

k ™m
Z / > lgilts, Eal() — gi(t, Ea(t))|la(e)|dt

"le

E /. S lost £0(8) - (e, B 0

"le

k
< / [K1l$(t}) — 6(8)] + K1 L|za(t) - 5(8)|)t
Jj=1

<K, /0 16a(t) — $()ldt + /0 Ky L|EA(t) — ()dt.

Thus by Gronwall’s inequality,

T
[Ba(t') — #(t)] < KyelF+DT /0 6a(t) — B(8) dt.
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Hence &, converges uniformly to Z and (4.7) holds. Next, we show that
(4.8) holds. Let € > 0, n > n(e) and let 7 € J),  for some k. For
simplicity, we assume that 7 = 7, . Then

(410)

|yn(7) = n(7)|

2005 = S NI ¥R

Z/ [Z gz(t],yn(s)) ’¢n(s) Zgz(tj,y‘n(s)) (Pn(s)] dS

'nJ i=1

= D; + D,.

By Lipschitz continuity of 42 with constant 1,

k
D, < Z/ L|yn(8) — §n(s)|ds
j=1Y9n;

(4.11)
= /0 Lign(s) — Gin(s)lds
and
k
(5 Yn —1, - ~:z d
ZI/,.,;“ ) (Uh(6) — S h(s) )
(4.12)

Z [ 30— ) 1

ngz__.

= D2,1 + D2,2.

In order to determine a bound of D;, we have to get bounds of Dy
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and D3 2. By integration by part,
k

3| S ot un )0 ) - B(73)

le—l

—Zgz(tg,yn (r3-1) W (1) — B (7 m”

Dy, <

(4.13)

[ }jgz(t],yn(s»} (Wi(s) — @ (s))ds
= D2,1,1 + D2,1,2,

by (4.9)

Dyi1 < Z 19i (tk, Yn (7)) (W5 () — B (7k))]

2
(@19 o+ Z: f; [EXCRN,
o — 9i(t, ¥n(75-1)) (Y5 (i-1) — Balri-1))|
£ 3 0861, 5 70)) (W o) — )
<mMe + (9(t) — (t:))e + mMe

and by (4.12) and | £ g;(t;, yn(s))| < n2LM(1 + mM),

Dyi12 < Z/ mn?LM(1 + mM)eds

(4.15) I s

= Tmn?’LM(1 +mM)e.
By (4.13), (4.14) and (4.15),
(416) D2,1 < Bl&,
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where B = 2mM + ¢(T) — ¢(0) + Tmn2LM(1 + mM). From (4.11),

(4.17)

Jrii=1

k m
Daa< [ Y Dinle) — (o)l Kads
i=1

- / " Llya(s) — (o) Kads.

By (4.10)-(4.13) and (4.17),

T
[Yn(T) = Gn(T) S316+/0 (L +mLK1)lyn(s) — Gn(s)|ds.

Due to Gronwall’s inequality,

|Yn(T) — Ga(7)| < BreellmEEIT,

As a consequence, the theorem is proved.
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(2]

3]
4]

(9]

(10)
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