GENERALIZED SOLUTION OF TIME DEPENDENT IMPULSIVE CONTROL SYSTEM CORRESPONDING TO VECTOR-VALUED CONTROLS OF BOUNDED VARIATION

CHANG EON SHIN AND JI HYUN RYU

ABSTRACT. This paper is concerned with the impulsive Cauchy problem where the control function u is a possibly discontinuous vector-valued function with finite total variation. We assume that the vector fields $f, g_i (i = 1, \dots, m)$ are dependent on the time variable. The impulsive Cauchy problem is of the form

$$\dot{x}(t) = f(t,x) + \sum_{i=1}^m g_i(t,x) \dot{u}_i(t), \quad t \in [0,T], \quad x(0) = \bar{x} \in \mathbb{R}^n,$$

where the vector fields $f, g_i : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ are measurable in t and Lipschitz continuous in x. If $g_i's$ satisfy a condition that

$$\sum_{i=1}^m |g_i(t_2,x) - g_i(t_1,x)| \le \phi(t_2) - \phi(t_1), \quad \forall t_1 < t_2, x \in \mathbb{R}^n,$$

for some increasing function ϕ , then the input-output function can be continuously extended to measurable functions of bounded variation.

1. Introduction

Given vector fields $f, g_i (i = 1, \dots, m)$ defined on $\mathbb{R} \times \mathbb{R}^n$, consider

Received March 26, 1999.

²⁰⁰⁰ Mathematics Subject Classification: 34A37, 93C15, 34A12.

Key words and phrases: impulsive control system, generalized solution.

The authors wish to acknowledge the financial support of the Korea Research Foundation made in the program year of 1998.

Chang Eon Shin and Ji Hyun Ryu

the time dependent impulsive control system with initial value

(1.1₁)
$$\dot{x}(t) = f(t,x) + \sum_{i=1}^{m} g_i(t,x)\dot{u}_i(t), \quad t \in [0,T],$$

$$(1.1_2) x(0) = \bar{x} \in \mathbb{R}^n.$$

where $\cdot = \frac{d}{dt}$ and $u(\cdot) = (u_1, \dots, u_m)(\cdot)$ is a vector-valued control function. Assume that vector fields f and g_i 's satisfy the following assumptions:

A1. There exists M > 0 such that for any $(t, x) \in \mathbb{R} \times \mathbb{R}^n$,

$$|f(t,x)| \leq M, \qquad |g_i(t,x)| \leq M.$$

A2. For each $x \in \mathbb{R}^n$, the map $t \mapsto f(t,x)$ and $t \mapsto g(t,x)$ measurable, g_i are C^1 w.r.t x and there exists L > 0 such that for any $t \in \mathbb{R}$ and $x, y \in \mathbb{R}^n$,

$$|f(t,x) - f(t,y)| \le L|x-y|, \quad |g_i(t,x) - g_i(t,y)| \le L|x-y|.$$

A3. There is an increasing function ϕ defined on [0,T] such that

$$\sum_{i=1}^{m} |g_i(t_2, x) - g_i(t_1, x)| \le \phi(t_2) - \phi(t_1), \quad \forall t_1 < t_2, x \in \mathbb{R}^n.$$

By possibly replacing ϕ with

$$ilde{\phi}(t) = \left\{ egin{array}{ll} 0 & ext{if } t < 0, \ 1+t+\phi(t) & ext{if } 0 \leq t < T, \ 2+T+\phi(T) & ext{if } t \geq T, \end{array}
ight.$$

it is not restrictive to assume that

$$\phi(0+) - \phi(0-) \ge 1$$
, $\phi(T+) - \phi(T-) \ge 1$, $\dot{\phi}(t) \ge 1$ a.e.

For K > 0, let

 $S_K = \{u = (u_1, \dots, u_m) : [0, T] \to \mathbb{R}^m | \text{ each } u_i \text{ is a piecewise constant function such that } u \text{ is right continuous, the discontinuities of do not happen at the discontinuities of } \phi \text{ and the total variation of } u \text{ is less than or equal to } K\}.$

For a C^1- control function u, we write by $x_u(\cdot)$ the Carathéodory solution of (1.1), that is, x_u is an absolutely continuous function and satisfies (1.1) a.e. In §2, depending on the canonical graph completion of u ([4]) which provides a definition of generalized solutions for an autonomous impulsive control systems corresponding to vector-valued control functions of bounded variation, we define a generalized solution x(u,t) of (1.1) corresponding to u in S_K . In Theorem 1.1, we show that $\psi: u \to x_u(t)$ is Lipschitz continuous on the set of C^1- functions whose total variations are uniformly bounded and by the continuity of ψ , we can define the generalized solution x(u,t) of (1.1) corresponding to a measurable function u having total variation less than or equal to K.

THEOREM 1.1. We assume A1, A2, and A3. There exists $\overline{M} > 0$ such that for any vector valued C^1- control functions u,v whose total variations are less than or equal to K

$$|x_u(T) - x_v(T)| \le \bar{M} \int_0^T |u(s) - v(s)| d\phi(s).$$

Inequality (1.2) makes it possible to extend the map $u \to x(u,T)$ continuously to discontinuous controls of bounded variation and define the corresponding generalized solution of (1.1).

DEFINITION 1.2. Let f and g_i 's satisfy A1, A2, and A3. For a measurable control function u having a finite total variation, a generalized solution x(u,t) is defined as the limit of the Carathéodory solutions of (1.1) corresponding to C^1 — control functions u_n which converge to u in $L^1(d\phi)$, that is, if $\{u_n\}$ is a sequence of C^1 —functions tending to u in $L^1(d\phi)$,

$$x(u,t) = \lim_{n \to \infty} x_{u_n}(t).$$

2. Definition of Generalized Solution Corresponding to Step Functions

The aim of this chapter is to define the generalized solution x(u,t) corresponding to $u \in S_K$ of (1.1) depending on the definition of the generalized solution for the autonomous impulsive control system in [4].

Denote by $e^{s\sum_{i=1}^{m} \varepsilon_{i}g_{i}(t)}z$ the value at time s of the Cauchy problem

$$\frac{dw}{ds} = \sum_{i=1}^{m} \varepsilon_i g_i(t, w(s)), \quad w(0) = z,$$

and in particular, at s = 1, we write

$$\hat{e}^{\sum_{i=1}^{m} \varepsilon_{i} g_{i}(t)} z = e^{1 \sum_{i=1}^{m} \varepsilon_{i} g_{i}(t)} z$$

Let $s \to \Phi(s, \sum_{i=1}^m \varepsilon_i g_i(t), z)$ be the fundamental matrix solution of the linear system

$$\dot{v}(s) = D_x \sum_{i=1}^m \varepsilon_i g_i(t, e^{s \sum_{i=1}^m \varepsilon_i g_i(t)z}) \cdot v(s),$$

where $D_x(\sum_{i=1}^m \varepsilon_i g_i(t,\cdot))$ is the Jacobian matrix of the first derivatives of the map $x \to \sum_{i=1}^m \varepsilon_i g_i(t,x)$ and $\Phi(0,\sum_{i=1}^m \varepsilon_i g_i(t),z)$ is the identity matrix.

Let $u \in S_K$. For $t \in [0,T]$, let V(t) be the total variation of u on [0,t]. Since the function $t \to t + V(t)$ is right continuous and strictly increasing, for every $s \in [0,T+V(T)]$, there is a unique t=t(s) such that

$$(2.1) s \leq t + V(t), \ \overline{t} + V(\overline{t}) < s, \ \forall \overline{t} < t.$$

Write

$$u^{-}(t) = \lim_{\bar{t} \to t^{-}} u(\bar{t}), \quad V^{-}(t) = \lim_{\bar{t} \to t^{-}} V(\bar{t}),$$

$$W(t) = t + V(t), \quad W^{-}(t) = t + V^{-}(t).$$

Generalized solutions of time dependent

We recall the canonical graph completion defined in [4]. The canonical graph completion is the map $\varphi = (\varphi_0, \dots, \varphi_m) : [0, W(T)] \to [0, T] \times \mathbb{R}^m$ defined by $\varphi(s) = (t(s), v(s))$, where t(s) is defined in (2.1) and v(s) is u(t(s)) if u is continuous at t(s), while $v(s) = \frac{s-W^-(t)}{W(t)-W^-(t)}u(t) + \frac{W(t)-s}{W(t)-W^-(t)}u^-(t)$ if the jump of u occurs at t=t(s). The above map φ is Lipschitz continuous with Lipschitz constant 1.

We write the characteristic function on I by χ_I . For $u \in S_K$, if $u = \sum_{i=1}^k d_i \chi_{I_i}$, where $I_i = [t_{i-1}, t_i)$ for $i = 1, \dots, k-1$, $I_k = [t_{k-1}, t_k]$ and $0 = t_0 < \dots < t_k = T$, we say that $\sum_{i=1}^k d_i \chi_{I_i}$ is a standard representation of u. Choose c_i in (t_{i-1}, t_i) for $i = 2, \dots, k-1$ and put $c_1 = 0, c_k = T$. Write $J_i = [c_i, c_{i+1})$ for $i = 1, \dots, k-2$ and $J_{k-1} = [c_{k-1}, T]$. Let $\varphi = (\varphi_0, \dots, \varphi_m)$ be the canonical graph completion of u and for $i = 1, \dots, k$, let each τ_k be a point in [0, T+V(T)] with $\varphi_0(\tau_k) = c_k$. Write $J_i' = [\tau_i, \tau_{i+1}), (i = 1, \dots, k-2)$ and $J_{k-1}' = [\tau_{k-1}, \tau_k]$.

Note that on J_i , the system

(2.2)
$$\dot{x} = f(t,x) + \sum_{i=1}^{m} g_j(t,x) \dot{u}_j$$

is equivalent to

(2.3)
$$\dot{x} = f(t,x) + \sum_{i=1}^{m} g_j(t_i,x) \dot{u}_j$$

since $\dot{u}_j = 0$, on $J_i \setminus \{t_i\}$.

If $x(c_i) = x_i$ is given, then we can define the generalized solution x(u,t) of (2.3) corresponding to u on J_i as $x(u,t) = y(\varphi_0^+(s))$, where $\varphi_0^+(s) = \max\{s: t = \varphi_0(s)\}$ and y(s) is the solution of the Cauchy problem on the interval J_i' ,

(2.4)
$$\frac{d}{ds}y(s) = f(\varphi_0(s), y(s)) \frac{d}{ds}\varphi_0(s) + \sum_{j=1}^m g_j(t_i, y(s)) \frac{d}{ds}\varphi_j(s),$$
$$s \in J_i', \quad y(\tau_i) = x_i.$$

Hence we define the generalized solution x(u,t) on [0,T] corresponding to $u \in S_K$.

DEFINITION 2.1. For $u \in S_K$. Let y(s) be the Carathéodory solution of the Cauchy problem

(2.5)
$$\frac{d}{ds}y(s) = f(\varphi_0(s), y(s)) \frac{d}{ds}\varphi_0(s) + \sum_{j=1}^m g_j(t_i, y(s)) \frac{d}{ds}\varphi_j(s),$$
$$s \in J_i', (i = 1, \dots, k-1), \quad y(0) = \bar{x},$$

where φ is the canonical graph completion of u. The map $t \mapsto x(u,t)$ defined by $x(u,t) = y(\varphi_0^+(s))$ is called the generalized solution corresponding to u of the Cauchy problem

(2.6)
$$\dot{x} = f(t,x) + \sum_{i=1}^{m} g_i(t,x)\dot{u}_i \qquad x(0) = \bar{x},$$

where $\varphi_0^+(s) = \max\{s : t = \varphi_0(s)\}.$

Depending on the above definition, we claim that (1.2) holds for $u, v \in S_K$ and for $u, v \in C^1$ in the main theorem, and deduce Definition 1.2.

For $u \in S_K$, by the above definition, $x(u, \cdot)$ is right continuous and for any $t \in [0, T]$ write $x(u, t-) = \lim_{s \to t-} x(u, s)$. The left and the right limits of the generalized solutions are uniquely determined and satisfy the property (2.7).

PROPOSITION 2.2. For $u \in S_K$, let $\sum_{i=1}^k d_i \chi_{I_i}$ be a standard representation of u for some $0 = t_0 < \cdots < t_k = T$. For each $j = 1, \cdots, k-1$,

(2.7)
$$x(u,t_i) = \hat{e}^{\sum_{i=1}^m (u_i(t_i) - u_i(t_i))g_i(t_i)} x(u,t_i).$$

Proof. Let $\varphi = (\varphi_0, \dots, \varphi_m)$ be the canonical graph completion of u and let y(s) be the solution of (2.5) corresponding to φ . If $t_j + V^-(t_j) = s_1$ and $t_j + V(t_j) = s_2$, then

$$s_2 - s_1 = W(t_i) - W(t_i), \ x(u, t_i) = y(s_2), \ x(u, t_i) = y(s_1)$$

and

(2.8)
$$x(u,t_j) - x(u,t_j) = y(s_2) - y(s_1).$$

Observing that on the interval $[s_1, s_2]$, $\varphi_0(s) = t_j$, $\frac{d}{ds}\varphi_0(s) = 0$ and $\frac{d}{ds}\varphi_i(s) = \frac{u_i(t_j) - u_i^-(t_j)}{W_i(t_j) - W_i^-(t_j)}$, for any $s \in [s_1, s_2]$

(2.9)
$$y(s) - y(s_1) = \int_{s_1}^{s} \sum_{i=1}^{m} g_i(t_j, y(\tau)) \frac{d}{d\tau} \varphi_i(\tau) d\tau.$$

Define a map $z:[0,1]\to\mathbb{R}^n$ by $z(\sigma)=y(s_1+\sigma(s_2-s_1))$. By (2.9),

$$(2.10) \qquad \frac{d}{d\sigma}z(\sigma) = \sum_{i=1}^{m} g_i(t_j, z(\sigma))(u_i(t_j) - u_i^-(t_j)), \quad z(0) = y(s_1)$$

and

$$z(1) = \hat{e}^{\sum_{i=1}^{m} (u_i(t_j) - u_i^-(t_j))g_i(t_j)} z(0).$$

Since
$$z(1) = y(s_2)$$
 and $z(0) = x(u, t_i)$, (2.7) holds.

3. Some Lemmas

Denote by $\tilde{e}^{sf(\tau)}\bar{x}$ the value at time $\tau+s$ of the Cauchy problem

$$\dot{x}(t) = f(t, x(t)), \quad x(\tau) = \bar{x}.$$

To prove the main theorem, we need to prove inequality (3.1). To do this, we need:

LEMMA 3.1. For any σ_1 , $t_1 \in [0,T]$ and $0 \le s \le t \le T$, let $v(t) = \Phi(t, \sum_{i=1}^m \varepsilon_i g_i(t_1), \tilde{e}^{\sigma_1 f(0)} \bar{x}) f(\sigma_1, \tilde{e}^{\sigma_1 f(0)})$.

- $(i) |v(t)| \leq M e^{\sum_{i=1}^{m} |\varepsilon_i| n^2 LT}$
- $|v(t)-v(s)| \leq |t-s| \sum_{i=1}^{m} |\varepsilon_i| n^2 L M e^{\sum_{i=1}^{m} |\varepsilon_i| n^2 L T}$

Proof. (i) Observing that

$$\begin{split} \frac{d}{dt}|v(t)| &\leq |D_x \sum_{i=1}^m \varepsilon_i g_i(t_1, e^{t \sum_{i=1}^m \varepsilon_i g_i(t_1)} \tilde{e}^{\sigma_1 f(0)} \bar{x}) \cdot v(t)| \\ &\leq \sum_{i=1}^m |\varepsilon_i| n^2 L|v(t)|, \end{split}$$

by Gronwall's inequality, we have

$$|v(t)| \leq |f(\sigma_1, \tilde{e}^{\sigma_1 f(0)} \bar{x})| e^{\sum_{i=1}^m |\varepsilon_i| n^2 LT}$$

$$\leq M e^{\sum_{i=1}^m |\varepsilon_i| n^2 LT}.$$

(ii)

$$\begin{split} |v(t)-v(s)| &= \left| \int_{s}^{t} D_{x} \sum_{i=1}^{m} \varepsilon_{i} g_{i}(t_{1}, e^{\sigma \sum_{i=1}^{m} \varepsilon_{i} g_{i}} \tilde{e}^{\sigma_{1} f(0)} \bar{x}) \cdot v(\sigma) d\sigma \right| \\ &\leq \int_{s}^{t} \sum_{i=1}^{m} |\varepsilon_{i}| n^{2} L M e^{\sum_{i=1}^{m} |\varepsilon_{i}|^{n} L T} d\sigma \\ &\leq |t-s| \sum_{i=1}^{m} |\varepsilon_{i}| n^{2} L M e^{\sum_{i=1}^{m} |\varepsilon_{i}|^{n^{2}} L T}. \end{split}$$

LEMMA 3.2. There exists a positive constant C such that for any $0 < t_1 < t_2 < T$, $\bar{x} \in \mathbb{R}^n$, and $|\varepsilon_i| \leq K$, $i = 1, \dots, m$,

(3.1)
$$|\tilde{e}^{(t_2-t_1)f(t_1)}\hat{e}^{\sum_{i=1}^m \varepsilon_i g_i(t_1)}\bar{x} - \hat{e}^{\sum_{i=1}^m \varepsilon_i g_i(t_2)}\tilde{e}^{(t_2-t_1)f(t_1)}\bar{x}| \\ \leq C \sum_{i=1}^m |\varepsilon_i||\phi(t_2) - \phi(t_1)|.$$

Proof. Let $0 < t_1 < t_2 < T$, $\bar{x} \in \mathbb{R}^n$ and $|\varepsilon_i| \leq K$, $i = 1, \dots, m$. Note that

$$(3.2) \begin{array}{l} |\tilde{e}^{(t_{2}-t_{1})f(t_{1})}\hat{e}^{\sum_{i=1}^{m}\varepsilon_{i}g_{i}(t_{1})}\bar{x} - \hat{e}^{\sum_{i=1}^{m}\varepsilon_{i}g_{i}(t_{2})}\tilde{e}^{(t_{2}-t_{1})f(t_{1})}\bar{x}| \\ \leq |\tilde{e}^{(t_{2}-t_{1})f(t_{1})}\hat{e}^{\sum_{i=1}^{m}\varepsilon_{i}g_{i}(t_{1})}\bar{x} - \hat{e}^{\sum_{i=1}^{m}\varepsilon_{i}g_{i}(t_{1})}\tilde{e}^{(t_{2}-t_{1})f(t_{1})}\bar{x}| \\ + |\hat{e}^{\sum_{i=1}^{m}\varepsilon_{i}g_{i}(t_{1})}\tilde{e}^{(t_{2}-t_{1})f(t_{1})}\bar{x} - \hat{e}^{\sum_{i=1}^{m}\varepsilon_{i}g_{i}(t_{2})}\tilde{e}^{(t_{2}-t_{1})f(t_{1})}\bar{x}| \\ \doteq E_{1} + E_{2}. \end{array}$$

We show that there exists $C_1, C_2 > 0$ such that

$$E_i \le C_i \sum_{i=1}^m |\varepsilon_i| |\phi(t_2) - \phi(t_1)|, \ i = 1, 2.$$

Generalized solutions of time dependent

Define a map $h:[0,T]\times[0,1]\to\mathbb{R}^n$ by

$$h(\sigma_1, \sigma_2) = \tilde{e}^{\sigma_1 f(t_1)} e^{\sigma_2 \sum_{i=1}^m \varepsilon_i g_i(t_1)} \bar{x} - e^{\sigma_2 \sum_{i=1}^m \varepsilon_i g_i(t_1)} \tilde{e}^{\sigma_1 f(t_1)} \bar{x}.$$

We have

$$\begin{split} \frac{\partial h}{\partial \sigma_1} = & f(t_1 + \sigma_1, \tilde{e}^{\sigma_1 f(t_1)} e^{\sigma_2 \sum_{i=1}^m \varepsilon_i g_i(t_1)} \bar{x}) \\ & - \Phi\bigg(\sigma_2, \sum_{i=1}^m \varepsilon_i g_i(t_1), \tilde{e}^{\sigma_1 f(t_1)} \bar{x}\bigg) f(\sigma_1, \tilde{e}^{\sigma_1 f(t_1)} \bar{x}), \end{split}$$

and by Lemma 3.1,

$$\begin{split} &\left|\frac{\partial h}{\partial \sigma_{1}}(\sigma_{1},\sigma_{2}) - \frac{\partial h}{\partial \sigma_{1}}(\sigma_{1},\sigma_{2}')\right| \\ &\leq \left|f(t_{1} + \sigma_{1},\tilde{e}^{\sigma_{1}f(t_{1})}e^{\sigma_{2}\sum_{i=1}^{m}\varepsilon_{i}g_{i}(t_{1})}\bar{x})\right| \\ &- f(t_{1} + \sigma_{1},\tilde{e}^{\sigma_{1}f(t_{1})}e^{\sigma_{2}'\sum_{i=1}^{m}\varepsilon_{i}g_{i}(t_{1})}\bar{x})| \\ &+ \left|\Phi(\sigma_{2},\sum_{i=1}^{m}\varepsilon_{i}g_{i}(t_{1}),\tilde{e}^{\sigma_{1}f(t_{1})}\bar{x})f(\sigma_{1},\tilde{e}^{\sigma_{1}f(t_{1})}\bar{x})\right| \\ &- \Phi(\sigma_{2}',\sum_{i=1}^{m}\varepsilon_{i}g_{i}(t_{1}),\tilde{e}^{\sigma_{1}f(t_{1})}\bar{x})f(\sigma_{1},\tilde{e}^{\sigma_{1}f(t_{1})}\bar{x})| \\ &\leq L|\tilde{e}^{\sigma_{1}f(t_{1})}e^{\sigma_{2}\sum_{i=1}^{m}\varepsilon_{i}g_{i}(t_{1})}\bar{x} - \tilde{e}^{\sigma_{1}f(t_{1})}e^{\sigma_{2}'\sum_{i=1}^{m}\varepsilon_{i}g_{i}(t_{1})}\bar{x}| \\ &+ \left|\sigma_{2} - \sigma_{2}'\right|\sum_{i=1}^{m}\left|\varepsilon_{i}\right|n^{2}LMe^{\sum_{i=1}^{m}\left|\varepsilon_{i}\right|n^{2}LT} \\ &\leq \left|\sigma_{2} - \sigma_{2}'\right|\sum_{i=1}^{m}\left|\varepsilon_{i}\right|LM(e^{LT} + n^{2}e^{\sum_{i=1}^{m}\left|\varepsilon_{i}\right|n^{2}LT}). \end{split}$$

Chang Eon Shin and Ji Hyun Ryu

Since
$$h(0,1) = 0$$
 and $\frac{\partial h}{\partial \sigma_1}(\tau,0) = 0$ for any $\tau \in [0,T]$,

$$h(t_2 - t_1, 1) = h(t_2 - t_1, 1) - h(0, 1)$$

$$= \left| \int_0^{t_2 - t_1} \frac{\partial h}{\partial \sigma_1}(\tau, 1) d\tau \right|$$

$$\leq \int_0^{t_2 - t_1} \left| \frac{\partial h}{\partial \sigma_1}(\tau, 1) - \frac{\partial h}{\partial \sigma_1}(\tau, 0) \right| d\tau$$

$$\leq |t_2 - t_1| \sum_{i=1}^m |\varepsilon_i| LM(e^{LT} + n^2 e^{\sum_{i=1}^m |\varepsilon_i| n^2 LT}).$$

Hence

(3.3)
$$|E_1| \le C_1 \sum_{i=1}^m |\varepsilon_i| |\phi(t_2) - \phi(t_1)|,$$

where $C_1 = LM(e^{LT} + n^2 e^{mKn^2L})$.

Next, we show that there exists $C_2 > 0$ such that

$$|E_2| \leq C_2 \sum_{i=1}^m |\varepsilon_i| |\phi(t_2) - \phi(t_1)|.$$

Let $x_0 = \tilde{e}^{(t_2-t_1)f(t_1)}\bar{x}$ and let each x_j , (j=1,2) is the solution of the Cauchy problem

$$\dot{x}=\sum_{i=1}^m arepsilon_i g_i(t_j,x), \,\, x(0)=x_0.$$

Then $|E_2| = |x_1(1) - x_2(1)|$. Since

$$|x_1 - x_2|$$

$$\begin{split} &= \left| \sum_{i=1}^m \varepsilon_i g_i(t_1, x_1) - \sum_{i=1}^m \varepsilon_i g_i(t_2, x_2) \right| \\ &= \left| \sum_{i=1}^m \varepsilon_i g_i(t_1, x_1) - \sum_{i=1}^m \varepsilon_i g_i(t_2, x_1) \right| + \left| \sum_{i=1}^m \varepsilon_i g_i(t_2, x_1) - \sum_{i=1}^m \varepsilon_i g_i(t_2, x_2) \right| \\ &\leq \sum_{i=1}^m \left| \varepsilon_i ||\phi(t_2) - \phi(t_1)| + \sum_{i=1}^m \left| \varepsilon_i |L| x_2 - x_1 \right|, \end{split}$$

by Gronwall's inequality,

$$|x_{1}(1) - x_{2}(1)| \leq \int_{0}^{1} \sum_{i=1}^{m} |\varepsilon_{i}| |\phi(t_{2}) - \phi(t_{1})| e^{\int_{s}^{1} \sum_{i=1}^{m} |\varepsilon_{i}| L d\sigma} ds$$

$$= C_{2} \sum_{i=1}^{m} |\varepsilon_{i}| |\phi(t_{2}) - \phi(t_{1})|,$$

where $C_2 = e^{mKL}$. By (3.2), (3.3) and (3.4), lemma holds with $C = C_1 + C_2$.

4. Proof of Theorem 1.1

We show that inequality (1.2) holds for $u, v \in S_K$ and then show that it holds for C^1 -functions u, v. Let

$$u(t) = (u_1, \dots, u_m)(t) = \sum_{i=1}^{N} (\alpha_{i,1}, \dots, \alpha_{i,m}) \chi_{I_i}(t)$$

and

$$v(t) = (v_1, \dots, v_m)(t) = \sum_{i=1}^{N} (\beta_{i,1}, \dots, \beta_{i,m}) \chi_{I_i}(t),$$

where $I_i = [t_{i-1}, t_i), i = 1, \dots, N-1, I_N = [t_{N-1}, t_N], \text{ and } 0 = t_0 < \dots < t_N = T.$ For $i = 1, \dots, N-1$ and $j = 1, \dots, m$, put

$$k_{i,j} = \alpha_{i+1,j} - \alpha_{i,j}, \ s_{i,j} = \beta_{i+1,j} - \beta_{i,j},$$

and for $i = 1, \dots, N$ and $j = 1, \dots, m$, put

$$l_i = t_i - t_{i-1}, \ d_{i,j} = \alpha_{i,j} - \beta_{i,j}.$$

For each $i=1,\dots,N-1, j=1,\dots,m, |k_{i,j}| \leq K, |s_{i,j}| \leq K$. By Proposition 2.2, the solution x(u,t) of (1.1) corresponding to u at the points of discontinuities satisfies

$$x(u,t_i) = e^{\sum_{j=1}^{m} (u_j(t_i) - u_j^{-}(t_i))g_j(t_i)} x(u,t_i).$$

By Definition 2.1, x(u,T), and x(v,T) can be written as

$$x(u,T) = \tilde{e}^{l_N f(t_{N-1})} \hat{e}^{\sum_{i=1}^m k_{N-1,i} g_i(t_{N-1})}.$$
$$\tilde{e}^{l_{N-1} f(t_{N-2})} \cdots \tilde{e}^{l_2 f(t_1)} \hat{e}^{\sum_{i=1}^m k_{1,i} g_i(t_1)} \tilde{e}^{l_1 f(t_0)} \bar{x},$$

and

$$x(v,T) = \tilde{e}^{l_N f(t_{N-1})} \hat{e}^{\sum_{i=1}^m s_{N-1,i} g_i(t_{N-1})}.$$

$$\tilde{e}^{l_{N-1} f(t_{N-2})} \cdots \tilde{e}^{l_2 f(t_1)} \hat{e}^{\sum_{i=1}^m s_{1,i} g_i(t_1)} \tilde{e}^{l_1 f(t_0)} \bar{x}.$$

By Lemma 3.2 and following similar computation of the proof of Theorem 2.3 in [12], there exists $\bar{M} > 0$ so that

$$|x(u,T)-x(v,T)| \leq ar{M} \int_0^T |u(s)-v(s)| d\phi(s).$$

Next we claim that inequality (1.2) holds for C^1 -functions u, v whose total variations are bounded by K. Suppose that for any $u \in C^1$, there exists a sequence $\{u_n\}$ in S_K such that $u_n \to u$ in $L^1(d\phi)$ and $x(u_n,T) \to x_u(T)$ as $n \to \infty$. For u and $v \in C^1$, we have sequences $\{u_n\}$ and $\{v_n\}$ so that $u_n \to u, v_n \to v$ in $L^1(d\phi)$, $x(u_n,T) \to x_u(T)$ and $x(v_n,T) \to x_v(T)$ as $n \to \infty$. We thus have that for any $n \in \mathbb{N}$

$$|x_{u}(T) - x_{v}(T)|$$

$$\leq |x_{u}(T) - x(u_{n}, T)| + |x_{v}(T) - x(v_{n}, T)| + |x(u_{n}, T) - x(v_{n}, T)|$$

$$\leq |x_{u}(T) - x(u_{n}, T)| + |x_{v}(T) - x(v_{n}, T)|$$

$$+ \bar{M} \int_{0}^{T} |u_{n}(s) - v_{n}(s)| d\phi(s)$$

and take $n \to \infty$ to get

$$|x_u(T)-x_v(T)| \leq \bar{M} \int_0^T |u(s)-v(s)| d\phi(s).$$

Hence we only have to show that for any $u \in C^1$, there exists a sequence $\{u_n\}$ in S_K such that $u_n \to u$ in $L^1(d\phi)$ and $x(u_n,T) \to x_u(T)$ as $n \to \infty$.

Let $u:[0,T]\to\mathbb{R}^m$ be a continuously differentiable map and let $\{u_n\}$ be a sequence of piecewise constant maps on [0,T] such that u_n converges uniformly to u and the total variations of u_n are uniformly bounded by K. There exists $K_1 > 0$ so that for any $t \in [0,T], |\dot{u}(t)| \leq$ K_1 . Write $u_n = \sum_{k=1}^{\delta(n)} d_{n,k} \chi_{I_{n,k}}$ where $I_{n,k} = [t_{n,k-1}, t_{n,k})$ for $k = 1, \dots, \delta(n) - 1$ and $I_{n,\delta(n)} = [t_{n,\delta(n)-1}, T]$, and $0 = t_{n,0} < t_{n,1} < t_{n,0}$ $\cdots < t_{n,\delta(n)} = T$. Choose $c_{n,k}$ in $(t_{n,k-1},t_{n,k})$ for $k=2,\cdots,\delta(n)-1$ and put $c_{n,1} = 0$ and $c_{n,\delta(n)} = T$. Write $J_{n,k} = [c_{n,k}, c_{n,k+1})$ for $k = 1, \dots, \delta(n) - 2$ and $J_{n,\delta(n)-1} = [c_{n,\delta(n)-1}, c_{n,\delta(n)}]$. Let $\psi_n(s) = 1$ $(\psi_n^0(s), \bar{\psi}_n(s)) \in \mathbb{R}^{m+1}$ be the canonical graph completion of u_n , where $\bar{\psi}_n(s) = (\psi_n^1(s), \cdots, \psi_n^m(s))$. Then ψ_n are Lipschitz continuous with constant 1. For $k = 1, \dots, \delta(n)$, let $\tau_{n,k}$ be a point in $[0, S_n]$ with $\psi_n^0(\tau_{n,k}) = c_{n,k}$. If ψ_n is defined on $[0,S_n] \subset [0,T+K]$, by defining $\psi_n(s) = \psi_n(s_n)$ for $s \geq s_n$, we may assume that ψ_n are defined on [0, T+K]. Write $J'_{n,i} = [\tau_i, \tau_{i+1})$ $(i = 1, \dots, \delta(n) - 2)$ and $J'_{n,\delta(n)-1} =$ $[\tau_{\delta(n)-1}, T+K]$. If $x_n(u_n, t)$ is the generalized solution of the Cauchy problem

(4.1)
$$\dot{x} = f(t,x) + \sum_{i=1}^{m} g_i(t,x) \dot{u}_n, \quad x(0) = \bar{x},$$

then it is the generalized solution of the Cauchy problem

(4.2)
$$\dot{x} = f(t,x) + \sum_{i=1}^{m} g_i(t_k, x) \dot{u}_n, \\ t \in J_{n,k}, \ k = 1, \dots, \delta(n) - 1, \quad x(0) = \bar{x}.$$

Let y_n be the Carathéodory solution of the Cauchy problem.

(4.3)
$$\frac{d}{ds}y_n(s) = f(\psi_n^0(s), y_n(s)) \frac{d}{ds}\psi_n^0(s) + \sum_{i=1}^m g_i(t_k, y_n(s)) \frac{d}{ds}\psi_n^i(s),$$

$$s \in J'_{n,k}, \ k = 1, \dots, \delta(n) - 1, \quad y_n(0) = \bar{x}.$$

Due to the Lipschitz continuity of ψ_n with Lipschitz constant 1,

$$\left|\frac{d}{ds}y_n\right| \le M(1+mM).$$

Let \tilde{x}_n be the Carathéodory solution of the Cauchy problem

(4.5)
$$\dot{\tilde{x}}_{n} = f(t, \tilde{x}_{n}) + \sum_{i=1}^{m} g_{i}(t_{k}, \tilde{x}_{n}) \dot{u}(t),
t \in J_{n,k}, \ k = 1, \dots, \delta(n) - 1, \quad \tilde{x}(0) = \bar{x}$$

and let \tilde{x} be the Carathéodory solution of the Cauchy problem.

(4.6)
$$\dot{\tilde{x}} = f(t, \tilde{x}) + \sum_{i=1}^{m} g_i(t, \tilde{x}) \dot{u}(t), \quad x(0) = \bar{x}.$$

Put $\tilde{y}_n(s) = \tilde{x}_n(\psi_n^0(s))$ and $\tilde{\varphi}_n(s) = (\tilde{\varphi}_n^1(s), \dots, \tilde{\varphi}_n^m(s)) = u(\psi_n^0(s))$. Then $\tilde{\varphi}_n$ is Lipschitz continuous with constant K_1 and $\tilde{y}_n(s)$ satisfies the ordinary differential equation

$$\frac{d}{ds}\tilde{y}_n(s) = f(\psi_n^0(s), \tilde{y}_n(s)) \frac{d}{ds} \psi_n^0(s) + \sum_{i=1}^m g_i(t_k, \tilde{y}_n(s)) \frac{d}{ds} \tilde{\varphi}_n^i(s),$$

$$s \in J'_{n,k}$$
 $k = 1, \dots, \delta(n) - 1,$ $\tilde{y}_n(0) = \bar{x}.$

The theorem is proved by showing that

(4.7)
$$\lim_{n\to\infty} |\tilde{x}_n(t) - \tilde{x}(t)| = 0 \quad \text{for any } t \in [0,T]$$

and

(4.8)
$$\lim_{n \to \infty} |\tilde{y}_n(s) - y_n(s)| = 0 \text{ for any } s \in [0, T + K].$$

Since u is uniformly continuous and u_n converges uniformly to u, we may assume that for any $\varepsilon > 0$, there exists $n(\varepsilon) \in \mathbb{N}$ such that $|u_n(s)|$

 $|u(t)| < \varepsilon$ whenever $n \ge n(\varepsilon)$, and $s, t \in J_{n,k}, k \in \{1, \dots, \delta(n) - 1\}$. Thus for any $\varepsilon > 0$, $n \ge n(\varepsilon)$ and $s \in [0, T + K]$,

Moreover since ϕ is an integrable function by choosing u_n so that $\max\{t_{n,k}-t_{n,k-1}:k=1,\cdots,\delta(n)\}$ are sufficiently small, we may assume that $\phi_n(t)\to\phi(t)$ in $L^1(dm)$, where $\phi_n(t)=\sum_{k=1}^{\delta(n)-1}\phi(t_k)\chi_{J_{n,k}}$, and dm is the Lebesque measure. We claim that (4.7) holds. Let $n\geq n(\varepsilon)$ and $t'\in J_{n,k}$. For simplicity, we may assume that $t'=c_{n,k}$. We compute a bound for $|\tilde{x}_n(t')-\tilde{x}(t')|$ to get

$$\begin{split} |\tilde{x}_n(t') - \tilde{x}(t')| &\leq \int_0^{t'} |f(t, \tilde{x}_n(t)) - f(t, \tilde{x}(t))| dt \\ &+ \sum_{j=1}^k \int_{J_{n,j}} \sum_{i=1}^m |g_i(t_j, \tilde{x}_n(t)) - g_i(t, \tilde{x}(t))| |\dot{u}(t)| dt \\ & \doteq E_1 + E_2, \end{split}$$

where $E_1 \leq \int_0^{t'} L|\tilde{x}_n(t) - \tilde{x}(t)|dt$ and

$$E_{2} \leq \sum_{j=1}^{k} \int_{J_{n,j}} \sum_{i=1}^{m} |g_{i}(t_{j}, \tilde{x}_{n}(t)) - g_{i}(t, \tilde{x}_{n}(t))||\dot{u}(t)||dt$$

$$+ \sum_{j=1}^{k} \int_{J_{n,j}} \sum_{i=1}^{m} |g_{i}(t, \tilde{x}_{n}(t)) - g_{i}(t, \tilde{x}(t))||\dot{u}(t)||dt$$

$$\leq \sum_{j=1}^{k} \int_{J_{n,j}} \left[K_{1} |\phi(t_{j}) - \phi(t)| + K_{1} L |\tilde{x}_{n}(t) - \tilde{x}(t)| \right] dt$$

$$\leq K_{1} \int_{0}^{T} |\phi_{n}(t) - \phi(t)||dt + \int_{0}^{t} K_{1} L |\tilde{x}_{n}(t) - \tilde{x}(t)||dt.$$

Thus by Gronwall's inequality.

$$|\tilde{x}_n(t') - \tilde{x}(t')| \le K_1 e^{L(K_1+1)T} \int_0^T |\phi_n(t) - \phi(t)| dt.$$

Chang Eon Shin and Ji Hyun Ryu

Hence \tilde{x}_n converges uniformly to \tilde{x} and (4.7) holds. Next, we show that (4.8) holds. Let $\varepsilon > 0$, $n > n(\varepsilon)$ and let $\tau \in J'_{n,k}$ for some k. For simplicity, we assume that $\tau = \tau_{n,k}$. Then

$$\begin{aligned} & (4.10) \\ & |y_{n}(\tau) - \tilde{y}_{n}(\tau)| \\ & \leq \left| \sum_{j=1}^{k} \int_{J'_{n,j}} [f(\psi_{n}^{0}(s), y_{n}(s)) - f(\psi_{n}^{0}(s), \tilde{y}_{n}(s))] \frac{d}{ds} \psi_{n}^{0}(s) ds \right| \\ & + \left| \sum_{j=1}^{k} \int_{J'_{n,j}} \left[\sum_{i=1}^{m} g_{i}(t_{j}, y_{n}(s)) \frac{d}{ds} \psi_{n}^{i}(s) - \sum_{i=1}^{m} g_{i}(t_{j}, \tilde{y}_{n}(s)) \frac{d}{ds} \tilde{\varphi}_{n}^{i}(s) \right] ds \right| \\ & \doteq D_{1} + D_{2}. \end{aligned}$$

By Lipschitz continuity of ψ_n^0 with constant 1,

(4.11)
$$D_{1} \leq \sum_{j=1}^{k} \int_{J'_{n,j}} L|y_{n}(s) - \tilde{y}_{n}(s)|ds$$
$$= \int_{0}^{\tau} L|y_{n}(s) - \tilde{y}_{n}(s)|ds$$

and

$$(4.12) D_{2} \leq \left| \sum_{j=1}^{k} \int_{J'_{n,j}} \sum_{i=1}^{m} g_{i}(t_{j}, y_{n}(s)) \left(\frac{d}{ds} \psi_{n}^{i}(s) - \frac{d}{ds} \tilde{\varphi}_{n}^{i}(s) \right) ds \right|$$

$$+ \left| \sum_{j=1}^{k} \int_{J'_{n,j}} \sum_{i=1}^{m} (g_{i}(t_{j}, y_{n}(s)) - g_{i}(t_{j}, \tilde{y}_{n}(s))) \frac{d}{ds} \tilde{\varphi}_{n}^{i}(s) ds \right|$$

$$= D_{2,1} + D_{2,2}.$$

In order to determine a bound of D_2 , we have to get bounds of $D_{2,1}$

and $D_{2,2}$. By integration by part,

$$D_{2,1} \leq \left| \sum_{j=1}^{k} \left[\sum_{i=1}^{m} g_{i}(t_{j}, y_{n}(\tau_{j})) (\psi_{n}^{i}(\tau_{j}) - \tilde{\varphi}_{n}^{i}(\tau_{j})) \right] - \sum_{i=1}^{m} g_{i}(t_{j}, y_{n}(\tau_{j-1})) (\psi_{n}^{i}(\tau_{j-1}) - \tilde{\varphi}_{n}^{i}(\tau_{j-1})) \right] \right|$$

$$+ \left| \sum_{j=1}^{k} \int_{J'_{n,j}} \left[\frac{d}{ds} \sum_{i=1}^{m} g_{i}(t_{j}, y_{n}(s)) \right] (\psi_{n}^{i}(s) - \tilde{\varphi}_{n}^{i}(s)) ds \right|$$

$$= D_{2,1,1} + D_{2,1,2},$$

by (4.9)

$$D_{2,1,1} \leq \sum_{i=1}^{m} |g_{i}(t_{k}, y_{n}(\tau_{k}))(\psi_{n}^{i}(\tau_{k}) - \tilde{\varphi}_{n}^{i}(\tau_{k}))|$$

$$+ \sum_{j=2}^{k} \sum_{i=1}^{m} |(g_{i}(t_{j-1}, y_{n}(\tau_{j-1}))$$

$$- g_{i}(t_{j}, y_{n}(\tau_{j-1}))(\psi_{n}^{i}(\tau_{j-1}) - \tilde{\varphi}_{n}^{i}(\tau_{j-1}))|$$

$$+ \sum_{i=1}^{m} |g_{i}(t_{1}, y_{n}(\tau_{0}))(\psi_{n}^{i}(\tau_{0}) - \tilde{\varphi}_{n}^{i}(\tau_{0}))|$$

$$\leq mM\varepsilon + (\phi(t_{k}) - \phi(t_{1}))\varepsilon + mM\varepsilon$$

and by (4.12) and $\left| \frac{d}{ds} g_i(t_j, y_n(s)) \right| \le n^2 L M (1 + mM)$,

(4.15)
$$D_{2,1,2} \leq \sum_{j=1}^{k} \int_{J'_{n,j}} mn^2 LM(1+mM)\varepsilon ds$$
$$= Tmn^2 LM(1+mM)\varepsilon.$$

By (4.13), (4.14) and (4.15),

$$(4.16) D_{2,1} \leq B_1 \varepsilon,$$

where $B_1 = 2mM + \phi(T) - \phi(0) + Tmn^2LM(1 + mM)$. From (4.11),

(4.17)
$$D_{2,2} \leq \sum_{j=1}^{k} \int_{J'_{n,j}} \sum_{i=1}^{m} L|y_n(s) - \tilde{y}_n(s)|K_1 ds$$
$$= \int_0^{\tau} mL|y_n(s) - \tilde{y}_n(s)|K_1 ds.$$

By (4.10)-(4.13) and (4.17),

$$|y_n(au) - ilde{y}_n(au)| \leq B_1 arepsilon + \int_0^T (L + mLK_1)|y_n(s) - ilde{y}_n(s)|ds.$$

Due to Gronwall's inequality,

$$|y_n(\tau) - \tilde{y}_n(\tau)| \le B_1 \varepsilon e^{(L+mLK_1)T}.$$

As a consequence, the theorem is proved.

References

- [1] A. Bressan, Lecture Notes on the Mathematical Theory, SISSA (1991).
- [2] _____, On Differential Systems with Impulsive Controls, Rend. Sem. Mat. Univ. Padova 78 (1987), 227-236.
- [3] _____, Impulsive Control Systems, Nonsmooth analysis and geometric methods in deterministic optimal control, Springer 1-22, 1995.
- [4] A. Bressan, F. Rampazzo, On Differential Systems with Vector-Valued Impulsive Controls, Boll. Un. Mat. Ital., Series B 3 (1988), 641-656.
- [5] _____, Impulsive Control Systems with Commutative Vector Fields, J. Optim. Theory Apply., 71 (1991), 67-83.
- [6] _____, Impulsive Control Systems without Commutativity Assumptions, Journal of optimization theory and applications 81 (1994), no. 3.
- [7] V. V. Chistyakov, On Mappings of Bounded Variation, Journal of dynamical and control systems 3 (1997), no. 2, 261-289.
- [8] G. Dal Maso, F. Rampazzo, On Systems of Ordinary Differential Equations with Measures as Controls, Differential and Integral Equations 4 (1991).
- [9] M. D. P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical problems, Shocks and Dry Friction (1993), 10-15.
- [10] F. Rampazzo, Optimal Impulsive Controls with a Constraint on Total Variation, SISSA (1990), 606-614.

Generalized solutions of time dependent

- [11] W. W. Schmaedeke, Optimal Control Theory for Nonlinear Differential Equations Containing Measures, SIAM Journal on Control, Series A 3 (1965), 231-280.
- [12] C. E. Shin, Generalized Solutions of Impulsive Control Systems Corresponding to Controls of Bounded Variation, Journal of KMS 34 (1997), 527-544.
- [13] C. E. Shin and J. H. Ryu, Generalized Solutions of Time Dependent Impulsive Control Systems, Rend. Sem. Mat. Univ. Padova, To appear.
- [14] H. J. Sussmann, On the Gap between Deterministic and Stochastic Ordinary Differential Equations, Annals of Probability 6 (1978), 17-41.

DEPARTMENT OF MATHEMATICS, SOGANG UNIVERSITY, SEOUL 121-742, KOREA *E-mail*: shinc@ccs.sogang.ac.kr