ω -LIMIT SETS FOR MAPS OF THE CIRCLE

SEONG HOON CHO

ABSTRACT. For a continuous map of the circle to itself, we give necessary and sufficient conditions for the ω -limit set of each nonwandering point to be minimal.

1. Introduction

Let S^1 be the circle. Throughout this paper f will denote a continuous map of the circle to itself. For any positive integer n, we define $f^1 = f$ and $f^{n+1} = f \circ f^n$. Let f^0 be the identity map of the circle. Let $AP(f), P(f), R(f), \Gamma(f), \Lambda(f)$ and $\Omega(f)$ denote the set of almost periodic points, periodic points, recurrent points, γ -limit points, ω -limit points and nonwardering points of f, respectively.

A subset Y in S^1 is called invariant if $f(Y) \subset Y$, and strongly invariant if f(Y) = Y. Suppose $Y \subset S^1$ is non-void, closed and invariant relative to f.

If Y has no proper subset which is non-void and invariant relative to f, then Y is said to be a minimal set.

- J. C. Xiong [4,5] proved that for any continuous map g of the interval, the following conditions are equivalent.
- (1) $\Gamma(g) = AP(g)$.
- (2) The period of each periodic point of g is a power of 2.

In this paper, we obtain the following theorem for maps of the circle.

THEOREM 5. Suppose that f is a continuous map of the circle. Then the following conditions are equivalent:

(1)
$$\Gamma(f) = AP(f)$$
.

Received February 8, 2000. Revised June 20, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 37C25, 37E10.

Key words and phrases: almost periodic points, ω -limit points, γ -limit points, α -limit points.

(2) For every $x \in \Omega(f)$, the ω -limit set $\omega(x, f)$ of x is minimal.

In 1986, L. Block and E. M. Coven [3] proved that for a continuous map g of the interval, if $x \in \Lambda(g) \setminus \overline{R(g)}$, then $\omega(x,g)$ is infinite minimal, and if $x \in \Omega(g) \setminus \overline{R(g)}$, then $\omega(x,g)$ need not be minimal. We have the following theorem for maps of the circle.

THEOREM 6. Suppose that f is a continuous map of the circle. Let R(f) be closed, $x \in \Omega(f)$, $f^{kN}(x) = p \in F(f^N)$ and $x \in int(W_i)$ for some i. If $x \in \Omega(f) \setminus \overline{R(f)}$, then $\omega(x, f)$ is infinite minimal.

2. Preliminaries and Definitions

Let f be a continuous map of the circle S^1 to itself. The orbit Orb(x) of $x \in S^1$ is the set $\{f^k(x)|k=1,2,\cdots\}$. A point $x \in S^1$ is a fixed point of f if f(x)=x and we denote the set of fixed points by F(f). A point $x \in S^1$ is a periodic point of f provided that for some positive integer $f^n(x)=x$. The period of f is the least such integer f. We denote the set of periodic point of f by f

A point $x \in S^1$ is a recurrent point of f provided that there exists a sequence $\{n_i\}$ of positive integers with $n_i \to \infty$ such that $f^{n_i}(x) \to x$, or equivalently, $f^n(x) \to x$. We denote the set of recurrent points of f by R(f).

A point $x \in S^1$ is called a nonwandering point of f provided that for every neighborhood U of x, there exists a positive integer m such that $f^m(U) \cap U \neq \emptyset$. We denote the set of nonwandering points of f by $\Omega(f)$.

A point $x \in S^1$ is almost periodic point of f provided that for any $\epsilon > 0$ one can find an integer n > 0 with the following property that for any integer q > 0 there exists an integer r with $q \le r < q + n$ such that $d(f^r(x), x) < \epsilon$, where d is the metric of S^1 . We denote the set of almost periodic points of f by AP(f).

J. C. Xiong [4] investigated the set AP(g) of almost periodic points of a continuous map g of the interval and proved the followings.

AP(g)=P(g) if and only if $\Omega(g)=P(g)$, and AP(g) is closed if and only if R(g) is closed. Also, if g has a periodic point of period which is not a power of 2, then $AP(g)-P(g)\neq\emptyset$ and $R(g)-AP(g)\neq\emptyset$, and if

the period of each periodic point of g is power of 2, then R(g) = AP(g). Therefore the period of each periodic point of g is power of 2 if and only if R(g) = AP(g).

A point $y \in S^1$ is called an ω -limit point of $x \in S^1$ provided that there exists a sequence $\{n_i\}$ of positive integers with $n_i \to \infty$ such that $f^{n_i}(x) \to y$. We denote the set of ω -limit points of x by $\omega(x, f)$. Define $\Lambda(f) = \bigcup_{x \in S^1} \omega(x, f)$.

A point $y \in S^1$ is called an α -limit point of $x \in S^1$ if there exist a sequence $\{n_i\}$ of positive integers with $n_i \to \infty$ and a sequence $\{x_i\}$ of points in S^1 with $x_i \to x$ such that $f^{n_i}(x_i) = y$ for all $i \ge 1$. We denote the set of α -limit points of x by $\alpha(x, f)$.

A point $x \in S^1$ is called an γ -limit point of $y \in S^1$ if $x \in \omega(y, f) \cap \alpha(y, f)$. Define $\Gamma(f) = \bigcup_{x \in S^1} \{\omega(x, f) \cap \alpha(x, f)\}.$

For a fixed point p of \overline{f} and a side S, the one-side unstable set of p is

$$W^{u}(p, f, s) = \cap_{u} \cup_{k > 0 f^{k}(U)},$$

where the intersection is taken over all s-half-neighborhoods U of p. Let p be a fixed point of f^N and S_i a side at $f^i(p)$ for each i. We denote W_i by $W^u(f^i(p), f^N, S_i)$ for each i.

3. Main results

The following lemmas appear in [1], [2], [4] and [6].

LEMMA 1 [1]. Suppose that f is a continuous map of the circle S^1 to itself. Then

$$P(f) \subset AP(f) \subset R(f) \subset \Gamma(f) \subset \overline{R(f)} \subset \Lambda(f) \subset \Omega(f)$$
.

LEMMA 2 [4]. Suppose that f is a continuous map of the circle S^1 to itself. Then $x \in AP(f)$ if and only if $x \in \omega(x, f)$ and $\omega(x, f)$ is minimal.

LEMMA 3 [6]. Suppose that f is a continuous map of the circle. Then

$$\Lambda(\Omega(f)) = \Lambda(\Gamma(f)) = \Gamma(f).$$

LEMMA 4 [2]. Suppose that f is a continuous map of the circle. If $x \in \Omega(f)$ has a finite orbit, $f^{kN}(x) = p \in F(f^N)$ and $x \in int(W_i)$ for some i, then $x \in \overline{R(f)}$.

Proof of Theorem 5 (1) \Rightarrow (2): Suppose that $\Gamma(f) = AP(f)$. Let x be any point in $\Omega(f)$, and let y be arbitrary point in $\omega(x, f)$. Let $z \in \omega(y, f)$. Then there exists a sequence of positive integers $n_i \to \infty$ such that $f^{n_i}(y) \to z$. Since $y \in \omega(x, f)$, there exists a sequence of positive integers $m_i \to \infty$ such that $f^{m_i}(x) \to y$. Hence $f^{m_i+n_i}(x) \to z$. Thus $z \in \omega(x, f)$. Hence $\omega(y, f) \subset \omega(x, f)$.

Since y is arbiturary point in $\omega(x,f)$, it suffices to show that $y \in w(y,f)$. Since $x \in \Omega(f)$, $\omega(x,f) \subset \Lambda(\Omega(f))$. By Lemma 3, $y \in \omega(x,f) \subset \Gamma(f)$. Since $\Gamma(f) = AP(f)$, $y \in AP(f)$. By Lemma 2, $y \in \omega(y,f)$. Hence $\omega(x,f) \subset \omega(y,f)$. Therefore $\omega(x,f) = \omega(y,f)$ and $\omega(x,f)$ is minimal.

 $(2)\Rightarrow (1):$ Suppose that for any $x\in\Omega(f),\,\omega(x,f)$ is minimal. Let $y\in\Gamma(f).$ Then by Lemma 3, $y\in\Lambda(\Omega(f)).$ There is $z\in\Omega(f)$ such that $y\in\omega(z,f).$ Since $\omega(z,f)$ is minimal, $\omega(y,f)=\omega(z,f).$ Hence $y\in\omega(y,f).$ By Lemma 1, $y\in\Omega(f).$ So $\omega(y,f)$ is minimal. Thus, by Lemma 2, $y\in AP(f).$ Therefore $\Gamma(f)\subset AP(f).$

COROLLARY 1. Suppose that f is a continuous map of the circle. Let R(f) be closed. Then the following conditions are equivalent:

- (1) R(f) = AP(f).
- (3) For every $x \in \Omega(f)$, the ω -limit set $\omega(x, f)$ of x is minimal.

Proof of Theorem 6 Suppose that R(f) is closed. Let $x \in int(W_i)$ for some i and $x \in \Omega(f) \setminus \overline{R(f)}$. Since R(f) is closed, by Lemma 1, $\Gamma(f) = R(f)$. By Theorem 5, $\omega(x,f)$ is minimal. Now we show that $\omega(x,f)$ is infinite. Assume that $\omega(x,f)$ is finite. Since $\omega(x,f)$ is closed and invariant, $\omega(x,f) = \overline{Orb(x,f)}$ by definition. Then $\overline{Orb(x,f)}$ is finite. Hence Orb(x,f) is finite, a contradiction.

The set $\Omega(f)$ of nonwandering points of f is always closed and invariant and $P(f) = P(f^n) \subseteq \Omega(f^n) \subseteq \Omega(f)$ holds for all n. It is well known that $R(f) = R(f^n)$ for all n. Therefore we have the following corollary.

COROLLARY 2. Suppose that f is a continuous map of the circle. Let R(f) be closed, $x \in \Omega(f)$, $f^{kN}(x) = p \in F(f^N)$ and $x \in int(W_i)$ for some i. If $x \in \Omega(f^n) \setminus R(f)$, then $\omega(x, f)$ is minimal.

References

- J. S. Bae, S. H. Cho and S. K. Yang, Relations between nonwandering points and turning points on the circle, Bull.Korean Math. Soc. 32 (1995), 57-66.
- [2] L. Block, E. Coven, I. Mulvey and Z. Nitecki, Homoclinic and nonwandering points for maps of the circle, Erg. Th. & Dynam. sys. 3 (1983), 521-532.
- [3] L. Block and E. M. Coven, ω-limit sets for maps of the interval, Erg. Th. & Dynam. sys. 6 (1986), 335–344.
- [4] J. C. Xiong, Sets of almost periodic points of continuous self-map of the interval, preprint.
- [5] _____, The attracting center of a continuous self-map of the interval, Erg. Th. & Dynam. sys. 8 (1988), 205-213.
- [6] S. K. Yang and K. J. Min, The attracting centre of a map on the circle, preprint.

Department of mathematics Hanseo university Chungnam, 356-820, Korea