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RELATIVE PROJECTIVE MONOMIAL GROUPS
Eunmi CHol

ABSTRACT. As an application of Clifford theory, we are interested in
a situation in which every irreducible prajective character of a finite
group (7 is an induced character of an irreducible linear character of
some subgroup H of (. For this purpose, we study relative projective
monomial groups with respect to subgroups.

1. Introduction

Let x be an irreducible projective character of a finite group G over a,
field #. Then x need not be induced from a character of a normal subgroup
N of G. However Clifford theorem says that x is always induced from a
character 8 of a subgroup H of & containing N. Thus §° — y and fy = ey
for some e > 1. But because of the troublesome factor e, the situation was
studied where #% = y with a character § of a subgroup H < G containing
N and @y is irreducible.

An irreducible projective representation p on (7 is said to be relative
projective monomial over a normal subgroup N if there is a subgroup
H < G and there is an irreducible projective representation v on H such
that N < H, ¥° = p and vy irreducible. If every irreducible projec-
tive representation of G is relative projective monomial over N then G
is called a relative projective monomial group over N. For the relative
projective monomial representation p of & over N, p 1s said to he in-
duced over N, and such H and 4 are said to induce p over N. Due to
relationships between representations and group characters, an irreducible
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projective character of G can be referred as relative projective monomial
by substituting representation by character.

In this paper we study relative projective monomial groups. We prove
that direct products and images of relative projective monomial groups
are relative projective monomial, which were studied in [1] for monomial
groups. We find relationships between monomial and projective monomial
groups. Since every projective representation of G is related to a 2-cocycle
a € ZX(@, F*), a different situation here is to calculate the corresponding
2-cocycles.

2. Preliminary

Let F be a field, N a normal subgroup of a finite group (G and o £
Z3(@G, F*). Anirreducible (projective) c-character x is called c-monomial
if there is a subgroup H of G and a linear a-character ¢ of H such that
p = 0°. Thus a relative a-monomial character over 1 is an a-monomial
character.

Projective monomial groups share many properties with monomial
groups, however there are differences that if F is an algebraically closed
field and if G/N is supersolvable then G is relative projective monomial
over N. But ( can be projective a-monomial if G/N is supersolvable,
N is abelian and oy is coboundary. Moreover in contrast to monomial
groups, metabelian group need not be projective monomial {for example
(G = A, the alternating group of degree 4) while it is monomial as well as
relative monormial over every normal subgroups.

As one of the fundamental distinctions of a projective character with
an ordinary character, a projective character need not be a class function
and so the resulting formula is more complicate than the corresponding
one for character.

An element z € & is said to be a-regular if a(z, g) = afg,z) for all
g € G such that g = g%, where g* = gz, If af{z,y) = aly, «¥) for any
a-regular © € G and y € G then o is said to be normal. And « is a class
function cocycle if every a-character of G is a class function.

LeEmMMa 1. ([5, (1.6.2)]) Let o € Z%(G, F*) and x be an a-character of
(. Then o is cohomologous to a normal cocycle and x(z) = a(z,y) a™?
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(y,2¥) x(z¥) for z,y € G. Thus if & is normal then x is a class function.
If F splits G with charF }|G| then « is normal if and only if a 1s a class
function cocycle.

Let x be a character of H < G. Then the induced character & of G is
given by x%(g) = ﬁ! 3 req X°(¢%) where x° satisfies x°(y) = x(v) fy € #
and x°(y) = 0 otherwise. For a projective a-character, we have the next.

LemMa 2. ([5, (1.9.1)]) For a € Z*(G, F*), let x be an a-character of
H with x(z) = 0 for all z € G — H. Let {g1, .., 9:} be a left transversal

of H in G. Then for any g € G, x°(9) = iy (g, s (9., 9%)x(9%)-
If G, is the set of a-regular elements of G and « is normal, then x°(g) =
Y x(g%) if g € Gy, and zero otherwise. Furthermore x%(g) = 1/|H]

ZmeG x(9%) if g € Go.
3. Relative projective monomial groups

Let Irr(G), be the set of irreducible a-representations of G over an
algebraically closed field F of characteristic 0. And the same notation will
be used for the set of irreducible a-characters abusively. If o = 1, then
Irr(G), = Irr(G) is the set of irreducible characters of G.

THEOREM 3. Let G and K be two isomorphic groups. If G is a pro-
Jective monomial group then so is K.

PROOF. Let f : G — K be an isomorphism and for some 3 € Z2(K, F*),
¥ be any irreducible 3-character afforded by an irreducible 3-representation
p: K — GL(V) for some simple K-module V.

If we define a by afg, z) = 3(f(g), f(z)) for g,z € G, then clearly « is
a 2-cocycle in Z%(G, F*). Since V can be a simple G-module by setting
gv = flgyv for v € V, the composition pf : G — GL(V) satisfies the
following.

pf(g)pf(x) = 8(f(9), f(@)p(f(9)f(2) = alg,z)pf(gz) (9.7 € G).
Hence pof is an irreducible a-representation on G that induces a character

y f because tr(pf)(g) = trp(f(g)) = xf{g) forall g € G. We write 8 = x f.
For o € Z*(G, F*), we may regard G as an a-monomial group. Hence

there is a subgroup H < G"and an irreducible a-representation ¥, €
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Trr(H), which affords a linear a-character ¢, such that ¢¥¥ = pf and
8¢ = 6.
Now let f(H)=T < K and p, = ¢ f5". Then for any s,t € T, since

pr(8)pu () = i f My f 1(E)
= a(f7Hs), FHEw (7 (st))
= 5(5: t)pl(St):

m is an irreducible S-representation on 7. And by computing

tr(p1(t)) = tep(f(R)) = trn(h) = 61(h) = 8. (8), (L €T, f{h) =1),

it follows that p; affords the character y; = 6; 5"

We claim that z € @ is a-regular if and only if f(z) is S-regular.
Indeed, if k € K with f(z)k = kf(z) and if k = f{g) (¢ € G), then since
flzg) = flz)k = kf{z) = f(gz) it follows that zg = gz and afz,g) =
a(g, ). This shows that 3(f(z),k) = alz,q) = alg,z) = Bk, f(x)), as
required.

Therefore since x3(g) = {(0:1f5")°(g) = 055" (g) for all ¢ € G, whether
g€ H or g H, we have, for any w € K with f(z) = w (z € G)

xi (w) = mz =7 HHZ()"fHI(w (for f(y) =)

ueK
1 o o
7O e ] ;91“” T

yEG
= 0%(z) = xf(z) = x(w).
Moreover since y (1) = 1, x; is linear and this completes the proof. |
For o, 3 € Z*(G, F*), the theory of a-characters of G can be different

from that of 8-characters as the ordinary character theories of two different
ETOupS.

THEOREM 4. Let a and § be in Z%(G, F*). If they are cohomologous
then (G is an c-monomial group if and only if (7 is a 3-monomial group.

PROOF. Suppose that & is a F-monomial group. Let x € Irr(G),
be afforded by an a-representation g on . Since ¢ is cohomoelogous
to 3, there is a map ¢t : G — F~, t{1) = 1 such that 8 = a{dt). If
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we define py on G by pi(g) = t(g)p(g) for ¢ € G then p; is an ir-
reducible G-representation because py(g)pi(z) = t(g)t(z)a(g, z)plgz) =
t{gz)3(g,x)p(g9x} = Blg,x)p1(gz) for g, € G. And since tro:(g) =

t{g)x(g) for all g € G, by letting x; on G by x1(g) = t(¢)x(9), x:1 is an
irreducible G-character of G afforded by p;.

There is H < G and an irreducible 3-character 8, of H such that
87 = xi and 8, linear. Write ¥; for the G-representation on H which
affords #,.

Let ¢ = ¢7't; and let @ be defined by 8(h) = t~1(h)8,(h) for all h € H.
It is easy to see that 1 is an a-represemtation on H , which affords the
character § because tr(y(h)) = t~ (h)tr(y1(h)) = t~1(R)6y(R) = B(h).
Clearly #(1) = t7'(1)8,(1) = 1 so that # is linear. Moreover, due to
Lemma, 2, for a left transversal {g1,--- , g} of H in G, we have

x(9) =t"(9)67(9) =t 79) D> _ Blg,3.)87 (9:, 9" )01 (¢°)
=1
=t(g) Zt(g)t(ga)t’l(ggz)a(g, gt (@)t (9"t (g9 ) (i, % )0(g*)

t
=Y alg, g)aM(gi, 4%)6(g*) = 6%(g).
i=1
Thus G is an a-monomial group. This completes the proof. O

We remark that Theorem 3 and Theorem 4 are true for relative projec-
tive monomial groups over some normal subgroups.

By Lemma 1, any a € Z*(G, F*) is cohomologous to a normal cocycle,
and any o-character x of G is a class function provided o is normal.
Hence due to Theorem 4, if ¥ is an a-monomial character of ¢ then we
may regard o as normal and we can use the form in Lemma 2 for induced
characters.

Let G be a direct product of groups G; (i = 1,2) and x; be class
functions on G;. If we define x = x1 % x2 by x(g192) = x1(g1)x2(g2) for
@ € Gy, then x is a class function of G. Moreover if ; is a character of
G, then under the isomorphism G; & G/G; (i # j), there is a character
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¢ of G with G; < Kerg; and %.(9192) = xi(g.). Thus x1 X x2 = ¥1%g s a
character of G.

For x, € Irr(G;), x1 X x2 are irreducible characters of G1 x G2 ([3,
(4.21)]). The similar situation holds for projective characters; if ¥ is
algebraically closed and if «; € Z%(G;, F*) then the set of all irreducible
(aq X a)-characters of Gy x Gz is {x1 % Xzlxi € Ix(Gi)a,} ([5, (1.5.1)}).
On the other hand, all irreducible a-characters of G1 x Gy fora € 2 (G %
Gy, F*) are as follows. Let G} be the commutator subgroup of G;.

LEMMA 5. ([5, (1.5.2)]) Let F be an algebraically closed field and G,
G be groups with (|G1/G}|,1G2/Gy|) = 1. If a € Z*(Gy1 x G, F*) then
there is o, € Z%(G,, F*) such that o is cohomologous to (a1 X ap)t for
somet: Gy x Gy — F* with t(1,1} = 1. And {(31 X x2)t|xi € Irr(Gi)e, }
is the set of all distinct irreducible a-characters of G X Ga.

THEOREM 6. Let F be an algebraically closed field. A finite direct
product of (relative) projective monomial groups is (relative) projective
monomial. That is, for a; € Z*(G,, F*) (i = 1,..,n), if G; are (relative) a;-
monomial groups (over N; <1 Gy), then [[ G, is (relative) || &,-monomial
(over T] Vo).

PROOF. We show this for i = 2. Choose any irreducible (o x ag)-
character x on G x G3. Due to the statement above Lemma 5, we may
write ¥ = x1 X xo for some x; € Irr(G,)o,. H G, is o;-monomial, there
is H; < G, and 6; € Irr(H;),, such that GiG‘ = y, and f, linear. Then
it is clear that ; x 8y € Irr(Hy X Ho)ayxay, and (g1,92) € G1 x Gz is
(a1 X 0)-regular if and only if g; € G; are a-regular (i = 1,2). Hence, by
computing we have

(61 x )% (g1, g2)

1 . N
=i, o x(ee))
1 2 (m1,22)€G1 x(7g

- \H—ﬁ—fﬂ S 60078308

1€ 12 2N

= 9?1 X 952(91,92)-.
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which shows that (8 x 85)61%¢: = %1 x 65 = x; x x3 = x. Since
1 = 61(1)8(1), 6 x 6, is linear, and so Gy X Gq is () X a)-monomial.
For the second assertion, if x € Irr (G X G2)a,xa, then x = x1 X x2 for
some x, € Irr(G,)q, as before. Thus there is H; with N, < H; < G; and
8, € Irr(H;)a, such that 956‘ = x; and 8;x € Irr(NV,),,. Therefore we have
91 X 92 € Irr(H1 X HZ)alxrxg and (91 x GQ)GIXGz =X. Since (91 x 82)N1><N2 =
1, ® B2p, which is an irreducible (ay X ag)-character of Ny x NVa. O

In next theorem, we study a converse of Theorem 6.

THEOREM 7. Let G = Gy x Go with {(|G4],|Ga]}) = 1. If G is a pro-
jective a-monomial group for a« € Z%(G, F*) then G, are projective -
monomial groups for some 2-cocycles a; € Z*(G,, F*). This statement is
true for relative projective monomial groups over normal subgroup N of

G.

PrOOF. For a € Z*(G x Gs, F*), there exists a; € Z2(G;, F*) such
that o is cohomologous to (ay x as) - ¢ for some ¢ : Gy X Gy -+ F* with
t{1,1) = 1.

Choose any x; € Irr{G;),,- Then (v X X2}t is an irreducible a-character
of G by Lemma 5. Thus if we denote x = ()3 X x2)t € Irr(G), then
x(g1, 52) = x1(g1)x2(g1)t(g1, g2) for g, € G;. Since G is a-monomial, there
is H < G and there is 8 € Irr{(H), such that 6 = x and 8 linear. As a
subgroup of G = (71 x Gy with (|G|, |G2|) = 1, we may write H = Hy, x H»
with H, < G,. For o € Z*(H, F*} and , € Z*(H;, F*),  is cohomologous
to (a1 X o) - ta e, where ty m, - H1 X Hy — F* with tg.m,(1,1) = 1.
Lemma. 5 tells us that the irreducible a-character @ of H = H, x H; forms
6 = (1 x B9)tg,«m, for some 8; € Irr(H;),, . Now

O > xa)t = x = 09 = ({61 % Oa)tm,m)® = (61 x 02)t = (67" x 6528,

which shows that y; = 6% (i = 1,2). Since 1 = #(1) = 6,(1)8:(1)¢(1,1) =
6:(1)82(1) and @, are linear, 7, are a,-monomial.

For relative projective monomial case, we write o = (a3 X as) - 6t for
some ¢ and for some o, € Z*(G;, F*) as before. And for any x, € Irr(Gi)a,,
(x1 % x2)t is an irreducible e-character of G, which we denote by x.

Since @ is relative a-monomial over a normal subgroup N, there is H
with N < H < G and 8 € Trr(H), such that 8° = x and 8y € Irr(N).
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Write H = H x H; and N = N; x N, with N; < H; < G;. Then the a-
character & forms 6 = (8, x 85t for some #; € Irr(H;),, and clearly x, = 95‘.
Moreover since 8y = ((#; X 82)t)xy = (F1n, % Pan, Jtwsw, € IIT(N), with
tayxm,(1,1) = 1 and fy is irreducible, each 8, is irreducible. O

As for ordinary monomial case, it is known that &, (i = 1,..,n) are
monomial groups if and only if [, G, is a monomial group.

COROLLARY 8. If G; (i = 1,..,n) is relative monomial over N; <1 G;
then [[G; is relative monomial over [[N;. Conversely, if G = [[G; is
relative monomial over N <1 G then G, are relative monomial over some
normal subgroups.

4. Factor groups of monomial groups

It was proved in Theorem 3 that if ¢ = K and G is projective monomial
then so is K. We study more general situation in next theorem.

THEOREM 9. If f : G — K is a homomorphism and G is relative
monomial over N, then so is f(G) over f(N}.

Proor. Let x be a character afforded by an irreducible representa-
tion p € Irx{f{G}). As was done in Theorem 3, we have an irreducible
representation pf on G which affords character x f.

Since (3 is relative monomial over N, there is H with N < H < ¢ and
an irreducible representation ¢, with character #; € Irr{H) such that

wé =pf, 66 =x/f and 1y € Ire(N).

We remark that Kerf < Kerpf = Kertf = [ o(Keryh)? < Kery,
using [3, (5.11)]. Consider f(H). Then f(N) < f(H} < f(G) and we
may consider f(H) = H/(Kerf N H)}. Since Kerf N H < Kery, there
is a homomorphism 1 on f(H) satisfying ¢ f = ¢, which is clearly an
irreducible representation on f(H). Let # be a map defined by 8{(k) =
f1(R) for k € f(H) with f(h) = k (h € H). Since trgp(k) = trypn(h) =
8,(h) = 8(k), 0 is the irreducible character of f(H) afforded by 4. Now,
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for any y € f(G )Withy—f( )(mEG)

) = i T, 2, ) R )
= mzzc:}(ng °(2°) QEZGHO

= 0 (@) =xf(z)= x(y)
for b = f(a). Moreover, since

(Ory O] = | ( 1 D (0w (7Y for t= f(n)
tEf(N)
1 -1
iy T, [ 2 On(m(n™)

— il Zﬂf (n)8f(n") = [Bin, O1n],

nEN
we have 8y € Irr(f(N)). This completes the proof. a

We note that it is known that every homomorphic image of monomial
group is monomial. In monomial case, an irreducible character can be
induced from a linear character of a subgroup which is in fact a homomor-
phism. However in relative monomial case the inducing character need
not be linear. The next corollary follows immediately from Theorem 9.

COROLLARY 10. If G is a monomial group then so is G/A for any
normal subgroup A of G. If G is a relative monomial group over N then

for any normal A of G contained in N, G/A is a relative monomial group
over N/A.

In what follows, we study the situation for projective monomial case.

‘I'HEOREM 11. If G is a projective a-monomial group then G/A is a
projective 3-monomial group for some o € Z*(G, F*) and 8 € Z*(G/A, F*).

PRrOOF. Let x be an irreducible 5-character on G/A which is afforded
by a representation p. Then there is a map p; on G satisfying pi(z) =
p(zA) and A < Kerp; for z € G. Let x; be a map such that y,(z) =
X(zA).
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Under the inflation map inf : Z3(G/A, F*) — Z*(G, F*), if we denote
o = inf 3 then for all z,y € G, a(z,y) = nf §(z,y) = B(zA,yA) and we
have

pr(@)p1(y) = p{zA)p(yA) = Bz A, yA)pleyA) = oz, y)pr(zy)-

This shows that p; is an irreducible a-representation on G, and y; is
the corresponding o-character on G. Since G is c-monomial, there is a
subgroup H < G and an irreducible a-character t; € Lrr(H), afforded by
an irreducible a-representation v on H such that Y¥§ = py, 8% = x; and
&, linear.

Now for any a € G, if a is e-regular then a € Kerf¢ if and only if
05 (a) = B9(1), that is, 3,ee05(a") = Yyeqr(1). Since [B1(a?)] < 6:(1)
for all ¢ € &, the above condition happens only if |f1(a?)| = 61(1) for all
a® € H. Thus af € Ker#y, and a € (Kerf;)¢ for all g € G. On the other
hand if @ is not a-regular then 8¥(a) = 0 which implies a ¢ Keré{.

Since A < Kerp, = Kery; = Ker0f = ﬂgec(Kerﬁljg < Kerfy, and since
H/A < G/A, we have mappings § and ) on H/A such that O(hA) = 01(h}
and 1(hA) = ¥, (k) for all h € H. For any h,k € H, we have

W(RAY(kA) = (R} (k) = alh, k)Y (hk) = BRA, kAYp(REA),

and so ¢ is an irreducible 3-representation that affords a character . Now
for any gA € G/A (g € G), we have

A =} bif 1 o €T
$ga) = o S 6 A) = g S8 = 0 ) < x(od)
2AEG/A wel
for A € H/A. Hence 894 = y. Clearly  is linear because f(1A) =
¢1(1) = 1. This completes the proof. O

COROLLARY 12. If G is a relative projective a-monomial group over
N then G/A is relative projective 3-monomial over N/A for some o €
ZHG,F*) and § € Z*(G /A, F*).

PROOF. We use the same notations 3, ¥, o = inf J and H, 8, as in
Theorem 11. Since G is a relative a-monomial group, we may assume H
contains N and 8,y € Irr(V), instead of 4, linear. By letting & on H /A
by B(hA) = 6;(h) for h € H, it is clear that 6%/4 = x and Oy is an
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irreducible 3-representation on N/A since

1
[On/4,Onya) = TV/A| > Onja(nA)fnja(n' A) =01y, 018] = 1.
nAeN/A

O
In general even if G/A is monomial, G may not be a monomial group.
We have partial answers for this situation.

COROLLARY 13. (1) If G/A is monomial, then any irreducible charac-
ter x of G with A < Kery is a monomial character.
(2) If G is an a-monomial group, then G is a relative a-monomial char-
acter with respect to any abelian normal subgroup N such that ay is
coboundary. '

PROOF. If pis an irreducible representation of G affording the character
x and A is contained in Kery = Kerp, then there is a representation p; on
G/A such that p,(gA) = p(9) (g € G). Write x; for the character afforded
by p;. Since G/A is monomial, there exist H/A < G/A and 6, € Irr(H/A)
such that 8, is linear and 6%/ = x,. Define 8 on H by 8(h) = 6,(hA) for
h € H. Then

X(0) = xa(oA) = 6 (0A) = 20 3~ 626°A) = 7 T 0°(6") = 0°(0)
zA€G/A z€G
Clearly @ is linear and this proves (1).

For any x € Irr(G)q, there is H < G and 6 € Irr(H), such that ¢ = x
and @ linear. Considering NH < G, we have (§¥H)¢ = G = x which is
irreducible on G. Thus it follows from [3, (5.11)] that V¥ is an irreducible
character on NH. Because N is abelian such that ay is coboundary,
(0¥H)y = (Onng)" has multiplicity 1. Thus (V¥)y is irreducible on
N. O

Note that the similar result for monomial case has been mentioned in
[3, (6.10)].
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