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EQUIVALENCE RELATIONS OF DOMAINS OF 
HOLOMORPHY AND PSEUDOCONVEX DOMAINS

Kwang Ho Shon, Jung Gi Woo and Chul Joong Kang

1. Introduction

F. Hartogs discovered an example exhibiting the remarkable exten­
sion properties of holomorphic functions in more than one variable for 
the first time. Let n > 2^ let D C Cn be an open set, and let K be a 
compact subset of D such that D \ K is connected. Then, for every 
h € O(D、K) 나lere exists H e O(i?) such that H = h m D K. 
That is, for n > 2, there are examples of open set D C D C Cn such 
that every holomorphic function in D admits a holomorphic extension 
to D.

In this paper, we introduce some of the elementary phenomena of 
domain of holomorphy in Section. 2, and the pseudoco요vexity followed 
by the early work of F. Hartogs and E. E. Levi in Section 3. We also 
discuss holomorphic convexity, an intrinsic global characterization of 
domains of holomorphy which was introduced in 1932 by H. Cartan. and 
P Thullen. By constructing a real analytic strictly plurisubharmonic 
exhaustion function, on a holomorphically convex domain, one can see 
directly that such a domain is pseudoconvex. The converse of this, the 
so called Levi Problem, is much harder. We prove it in Section 3 and 
for general case in Section. 4.
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In Section 4, we introduce a class of complex analytic manifolds 
and analytic spaces, whose definition is modeled on the properties of 
domains of holomorphy in Cn.

2. Domains of holomorphy

Definition 2.1. (1) A holomorphic function / on D is completely 
singzdar at p G dD if for every connected neighborhood V of p there 
dose not exist h € <9(V) which agrees with / on some connected com­
ponent of v n D. 一

(2) D is called a domain of existence (or sometimes it is called a 
weak domain of holomorphy} if for every p G dD 난고ere is fp E O(D) 
which is completely singular at p.

(3) D is called a domain of holomorphy if there exist f E 
which is completely singular at every boundary point p E dD.

Definition 2.2. A function / E is called holomorphically 
extendMe (from a point a 6 D) to a polydisk P(a,p) if its Taylor 
series,

哗아 (…)“,
2 시 、

converges on P(a,p) ; it is called holomorphically extendible at a point 
b E Cn x 7? if for some a E D the point b lies in a polydisk P(a,p) to 
which f is holomorphically extendible.

Definition 2.3. A domain DcCn is called holomorphically convex 
if for each compact subset K C Dy the holomorphically convex hull of 
K in D,

KoW = {zeD ： I六圳 < sup\f\ = \\f\\K/f e ©(£))}, 
K

is compact in D.
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DEFINITION 2.4. Let D C Cn be a domain and /x a distance func­
tion. Define

I丄=卩e Cn) = inf 以z — w).
weCp

If X U D is a set, we write 用)(X) = inf 丿如(⑦).
MX

Theorem 2.5. If D C Cn be an open set and / € O(D) then the 
following are equivalent:

(1) D is holomorphically convex;
(2) For each sequence of points (印力日时 with no limit point in D, 

there exists an f E (9(D) such that sup |/(a7)| = oo;
丧N

(3) D %s a domain of holomorphy (or the point pEdD is essential);
(4) For each z E Cn、D, there exists an f E (9(D) that is not 

holomorphically extendible at z;
(5) For each a E D and each polydisk P(a, p) D, there exists an 

f E O(D) that is not holomorphically extendible to F(a, p);
(6) D is a domain of existence (or D is a weak domain of holo­

morphy);
(7) For any f € O(D\ K <巨 D and any distance function 阴 the 

inequality

1/(^) I < "zeK n |/(2시 < 冈D(z), € Ko{Dy,
(8)

(9)

For any f E O(D), K 匿 D and any distance function 饱
have

sup ( 
zEKo(d)

Lf(2시 } 
虹>(z)'

If K Dj then for any distance function 肉

we

岫譬牛=

闻(K) = Mz>(^o(d))；

(10) Each p E dD has a neighborhood Up such that Up Q D is a 
domain of holomorphy;

(11) Each p G dD has a neighborhood Up such that UpC\ D ts holo­
morphically convex;

(12) For every infinite set X C D, which is discrete in D, there 
exists an f E C?(D) which is unbounded on X,
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PROOF. The detail proof of equivalent conditio표s may be found in 
G. M. Henkin [5], L. Kaup and B. Kaup [8] and S. G. Krantz [9].

3. Pseudoconvex domains

Definition 3.1. Let D c Cn, and let / ： 7) R U {-oo} be 
u.s.c.. We say that f is plurisubharmonic if for each complex line 
I = {a + C Cn, the function < i——> /(a + b<) is subharmonic on 
Dz = {CeC：ft + bCeD}.一

Let PS(D) be the family of plurisubharmonic functions on D. Then 
f € PS(D) if and only if the complex Hessian of J is positive semi- 
definite at each point of D. That is,

w끄、 a 으 f
E 嵐*池虹 2(宀 eD,^we Cn.

A real-valued function f € C2(£>), D C Cn is called strictly plurisub­
harmonic if it has the Levi form:

史 으泰V切网 > 0, e D「w3 0) e Cn.

Definition 3.2. (1) A function : D R on the open set D is 
called an exhaustion function for D if for every c G R the set Dc = 
{z E D :< c} is relatively compact in D.

(2) A domain D U Cn is called L-pseudoconvex (L originated with 
Lelong) if there is a C° plurisubharmonic exhaustion function.

(3) A domain D C Cn is called G-pseudoconvex (G originated with 
Grauert) if there is a C°° strictly plurisubharmonic exhaustion func­
tion.
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Definition 3.3. (1) Let D c Cn be a domain with C2 boundary 
and let p € dD. Let p be a C2 defining function for D. We say that 
dD is Levi pseudoconvex at p, if 

n
Lp,p = £ (p)wjWfc > 0,vw G Tp(dD), and 

OZ3OZk

4 伽)={gc“ 丈釣 0)凹=0}. 

3
The expression on the left side is called the Levi form. The point p is 
said to be strictly Levi pseudoconvex if

Lp,p =支 a"；。，啊网 > °，"峪 °)e Tp(dD\

A domain D C Cn is called Levi pseudoconvex if all its boundary 
points are Levi pseudoconvex. We write it as Le-pseudoconvex.

(2) A domain D C Cn is called Hartogs pseudoconvex if there is a 
distance function /z such that — log is plurisubharmonic on D. We 
write it as H-pseudoconvex.

(3) A domain D U Cn is called D-pseudoconvex (D originated with 
Distance) if — log 由？ is plurisubharmonic ondD for any distance func­
tion 卩，.

(4) A domain D C Cn is said to satisfy the continuity principal 
if for every family {Sa : a E 1} oi analytic discs in D the following 
implication holds;

U dSa 妲 D =» u Sa 但 D. 
cuGZ aQl

Sometimes it is called O-pseudoconvex (O originated with Oka).
(5) A domain D C Cn is called P-pseudoconvex (P originated with 

plurisubharmonic) if for every compact set K C D, its plurisubhar­
monic convex hull；

Kps(d)= {z € D : u(z) < supu^u e PS(D)), 
K
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is relatively compact in D, Generally, we have Kps(D) C Ko{d)-
(6) A domain Z) C Cn is called C-pseudoconvex (C originated with 

Cartan) if each p G dD has an open neighborhood U such that U 0 D 
is holomorphically convex.

DEFINITION 3.4. A domain D C Cn is called pseudoconvex if one of 
the equivalent condition in Theorem 3.5 is satisfied. A bounded domain 
D C Cn is called strictiy-pseudoconvex if there are a neighborhood U 
of dD and a strictly .plurisubharmonic function. / € C2(U) such that 
Dnu {zeu ： <o}.

THEOREM-3.5. If D C Cn is an open set, then the following are 
equivalent:

(1) D is D-pseudoconvex, H-pseudoconvex, L~pseudoconvex, G- 
pseudoconvex, P-pseudoconvex, O-pseudoconvex (or D satisfy 
the continuity principle)Le-pseudoconvex and C-pseudoconvex;

(2) If p, is any distance function and if d C. D is any closed analytic 
disc, then 卩，顼脳)=卩D(d);

(3) (2) is true for just one particular distance function;
(4) D = UjDj where each D3 is H-pseudoconvex and D3 e R+i；
(5) (4) is true except that each D3 is bounded strictly Le-pseudoconvex;
(6) The equation du = f always has a solution

u e。溢)(£>), v/ e %Z+1)0)),再=o, q = o, 1,.. .，孔一1.

PROOF. The detail proof of equivalent conditions may be found in 
L. Hormander [7] and S. G. Kranz [9]

Theorem 3.6 (Levi problem). Pseudoconvex is holomorphically 
convex.

PROOF. By Theorem 3.5, D is G-pseudoconvex. That is, for every 
c € R, there exist E C°°(D) and strictly PS(D) such that Dc = 
{z E D : ⑵ V c} e D Let K be any compact set in D and 
let c = maxqo(K) + 1 then K C Dc. We only have to prove that

U Dc>. Then Ko(q)C -Dco(d)U D신 © D , vc,(> c) E 底. 
Hence, D is holomorphically convex.
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4. Stein spaces

We introduce a class of complex analytic spaces (generally, manifolds 
U reduced complex spaces C complex spaces C ringed spaces), whose 
definition, is modeled on the properties of domains of a holomorphy in 
Cn. We reprove the Levi problem in complex spaces.

DEFINITION 4.1. Complex space D is called a Stein space (or holo­
morphically complete space) if it satisfies "the conditions:

(1) D is holomorphically convex.
(2) D is holomorphically separable. That is, for x y E D there 

exists an / G such that /(x)寸二 /(?/).
(3) Every connected component of D has a countable topology. That 

is? there exists a countable basis of open sets.

DEFINITION 4.2. We call L a B-set in D, if for every coherent an­
alytic sheaf :F defined near L, and every g > 1, = 0. Open
B-set in D are also called B-spaces.

Theorem 4.3. (Exhaustion theorem) [8] The following statements 
about a complex space D are equivalent:

fl) D is a B-space;
(2) There exists an exhaustion £)= U 以,with open B-sets D3 @ 

Dj+i in D such that each (以厂孔玖)is a Runge pair.

Theorem 4.4. (Characterization of Stein spaces) [8] If D (Z Cn be 
a domain then the following are equivalent:

fl) D is holomorphically convex;
(2) 0 is a Stein space;
(3) D is weakly holomorphically convex;
(4) H'(D)N) = 0 for every coherent ideal T in such that the 

zero set 7V(Z) is discrete;
(5) D is a B-space;
(6) Every a G dD admits a neighborhood U in Cn such that DC\U 

is Stein;
(7) There exists an exhaustion D = U D3 by ope교 subsets D3

D서」l《트 D that are Stein;
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(8) Every hyperplane section H of D in Cn is Stein, and the induced
restriction-homomorphism is subjective;

(9) Every hyperplane section H of Z) in Cn is Stein, and every 
additive Cousin problem on D has a solution;

(10) For every complex line E in Cn, the【estrictio그-homomorphism
£)C?(£>) A E) is surjective;

(11) The sequence

0 — O(D) - 50?0(D)@ >d» 咬(D) — 0

is exact;
(12) Hq(D, (9)=0forg = l,...,n-l;
(13) For /i,..., fm € O(D) without common zeros, there exist

m
§1, - - -,gm G <9(£>) such that 1 = £ JR，；

5=1
(14) The mapping e i D SP(D), z i——> is surjective.

Now we reprove the Levi problem in complex spaces.
Theorem 4.5. Every pseudoconvex domain in Cn is holomorpically 

convex.

PROOF. Fix a strictly pseudoconvex exhaustion D = UD7 satisfying 
the following two conditions for each j:

(1) D3 © Dj-i-i, and
(2) There exists a strictly plurisubharmonic functionR) 

such that the intersection of D3 with each connected component of D
is a connected component of {% < 0}.

Then Q_i = {x E :代t(z) V 0} e hence 以?一丄 is Stein. 
A교d if a strictly pseudoconvex domain in a Stein spsce D is of the 
form U = {x E D : < 0} for an appropriate ip £ C(Z>, R) which
is stric니y subharmonic on D, then (D)U) is a Runge pair of Stein 
spaces. So, (D» R+i) is a Runge pair of Stein spaces. Thus, Theorem 
4.3 implies that D is B—space and by Theorem 4.4, we have the result
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