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EQUIVALENCE RELATIONS OF DOMAINS OF
HOLOMORPHY AND PSEUDOCONVEX DOMAINS

KwaNG Ho SHoN, Jung GI Woo AND CHUL JOONG KANG

1. Introduction

F. Hartogs discovered an example exhibiting the remarkable exten-
sion properties of holomorphic functions in more than one variable for
the first time. Let n > 2, let D < C™ be an open set, and let K be a
compact subset of D such that D <\ K is connected. Then, for every
h € O(D \ K) there exists H € O{D) such that H = h in D \ K.
That is, for n > 2, there are examples of open set D C D c C" such
that every holomorphic function in I admits a holomorphic extension
to D.

In this paper, we introduce some of the elementary phenomena of
domain of holomorphy in Section 2, and the pseudoconvexity followed
by the early work of F. lHartogs and E. E. Levi in Section 3. We also
discuss holomorphic convexity, an intrinsic global characterization of
domains of holomorphy which was introduced in 1932 by H. Cartan and
P Thullen. By constructing a real analytic strictly plurisubharmonic
exhaustion function on a holomorphically convex domain, one can sce
directly that such a domain is pseudoconvex. The converse of this, the
so called Levi Problem, is much harder. We prove it in Section 3 and
for general case in Section 4.
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In Section 4, we introduce a class of complex analytic manifolds
and analytic spaces, whose definition is modeled on the properties of
domains of holomorphy in C".

2. Domains of holomorphy

DEFINITION 2.1. (1)} A holomorphic function f on D is completely
singular at p € 8D if for every connected neighborhood V of p there
dose not exist h € (V') which agrees with f on some connected com-
ponent of V N D. -

(2) D is called a domain of existence (or sometimes it is called a
weak domain of holomorphy) if for every p € 8D there 1s f, € O(D)
which is completely singular at p.

(3) D is called a domain of holomorphy if there exist f € O(D)
which is completely singular at every boundary point p € 9D.

DEFINITION 2.2. A function f € O(D) is called holomorphically
extendible (from a point @ € D) to a polydisk P(a,p) if its Taylor

EE: LDaf)ﬁﬂ( )

acN®

converges on P(a, p) ; it is called holomorphically extendible at a point
b € C* \ D if for some @ € D the point b lies in a polydisk P{a, p) to
which f is holomorphically extendible.

DEFINITION 2.3. A domain DCC™ is called holomorphically convex

if for each compact subset K < D, the holomorphically convex hull of
K in D,

Koy ={z€D:|f(2)| < sup Il =Iflik, 7 f € O(D)},

is compact in D.
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DEFINITION 2.4. Let D C €C® be a domain and g a distance func-
tion. Define

up(2) = w(z,Cp) = inf u(z—w).
welp
HX CDis a set, we write up(X) = zn)_)z uplz).
TE
THEOREM 2.5. If D C C™ be an open set and f € O(D) then the
following are equivalent:
(1) D is holomorphically convez;

(2) For each sequence of points (a,),en with no limit point in D,
there exists an f € O(D) such that sup|f(a,)| = oo;
J€N

(3) D s a domain of holomorphy (or the point pc8D 1is essential);

(4) For each z € C* < D, there emsts an f € O(D) that 15 not
holomorphically extendible at 2;

(5) For each a € D and each polydisk P{a, p) ¢ D, there exists an
f € O(D) that ws not holomorphically extendible to P(a, p);

(6) D is a domain of eristence (or D is a weak domain of holo-
morphy);

(7) For any f € O(D), K € D and any distance function yu, the
inequalily

1F(2)] < up(2), Yz€ K = |f(2)| < pp(2), Yz € Ko(p);
(8) For any f € O(D), K € D and any distance function u, we

have
{lf( )I} {If(z)l

h
k@ T L Vunl2)
(9) If K € D, then for any distance function p,

po(K) = pp(Kowmy);
(10) Each p € 0D has a neighborhood Uy, such that U, N D is a
domamn of holomorphy;
(11) Each p € 8D has a neighborhood U, such that U, N D s holo-
morphically convex;
(12) For every infinite set X C D, which is discrete in D, there
ezists an f € O(D) which is unbounded on X.
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PROOF. The detail proof of equivalent conditions may be found in
G. M. Henkin [5], L. Kaup and B. Kaup [8] and S. G. Krantz {9].

3. Pseudoconvex domains

DEFINITION 3.1. Tet D C C*, and let f : D — RU {—oc} be

u.s.c.. We say that f is plurisubharmonic if for each complex line

= {a + b} C C", the function ¢ — f{a + &) is subharmonic on
={(eC:a+b{ € D}

Let PS(D) be the family of plurisubharmonic functions on D. Then
f € PS(D)} i and only if the complex Hessian of f is positive semi-
definite at each point of D. That is,

T > A4 v n_
32__: 32_,3' (2)w,w > 0,72 D,"weC
A real-valued function f € C%(D), D C C™ is called strictly plurisub-

harmonic if it has the Levi form:

9%
02,0%,

(2w, > 0,2 € D,Yw(s£ 0) € C",
7k=1

DEFINITION 3.2. (1) A function ¢ : D — R on the open set D is
called an ezhaustion function for D if for every ¢ € R the set D, =
{z € D: p(z) < ¢} is relatively compact in D.

(2) A domain D C C™ is called L-pseudoconvez (L originated with
Lelong) if there is a C° plurisubharmonic exhaustion function.

{3) A domain D C C" is called G-pseudoconver (G originated with

Grauert) if there is a C* strictly plurisubharmonic exhaustion func-
tion.
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DerFNITION 3.3, (1) Let D C C® be a domain with C? boundary

and let p € 8D. Let p be a C? defining function for D. We say that
6D is Lev: pseudoconver at p, if

Lyp= Z az 6* (p)w,wx > 0,"w € Tp(8D), and
phk=1""7

1 n. N 0P
T,(6D) = {we C™: ; &;(p)w) = 0}.

The expression on the left side is called the Levi form. The point p is
said to be strictly Levi pseudoconvez if

Lop= z c’) (p)w]w;c > 0,Yw(# 0) € T,(6D).

A domain D C C" is called Levi pseudoconvez if all its boundary
points are Levi pseudoconvex. We write it as Le-pscudoconver.

(2) A domain D C C™ is called Hartogs pseudoconvez if there is a
distance function g such that —log ptp is plurisubharmonic on D. We
write it as F-pseudoconver.

(3) A domain D C C” is called D-pseudoconver {D originated with
Distance) if —log pp is plurisubharmonic on D for any distance func-
tion p.

(4) A domain D C C" is said to satisfy the continuity principal

if for every family {S. : @ € I} of analytic discs in D the following
implication holds;

U oS, €D = U S,€D.
o€t acl

Sometimes it is called O-pseudoconver (O originated with Oka).
(5} A domain D C C” is called P-pseudoconvexr (P originated with

plurisubharmonic) if for every compact set KX C D, its plurisubhar-
monic convex hull,

KPS(D) = {z € D:u(z) < supu,”u € PS(D)},
K
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is relatively compact in D Generally, we have K ps(p) C K o(D)-
(6) A domain D C C” is called C-pseudoconvez (C originated with

Cartan) if each p € 3D has an open neighborhood U such that U N D
is holomorphically convex.

DEFINITION 3.4. A domain D C C" is called pseudoconver if one of
the equivalent condition in Theorem 3.5 is satisfied. A bounded domain
D C C™ is called strictly-pseudoconvez if there are a neighborhood U
of 8D and a strictly plurisubharmonic function f € C?(U) such that
DNU={zeU: f(2) <0}.

THEOREM-3.5. If D C C™ is an open set, then the following are
equivalent:

(1) D is D-pseudoconvez, H -pseudoconvex, L-pseudoconvexr, G-
pseudoconverx, P-pseudoconvez, O-pseudoconvezr (or D satisfy
the continuity principle), Le-pseudoconvez and C-pseudoconver;

(2) If p 1s any distance function and if d C D is any closed analytic
disc, then pp(8d) = pup(d);

(3) (2) is true for just one particular distance function;

{(4) D =UD, where each D, is H-psevdoconver and D, € D, ;

(5) (4) is true except that each D, is bounded strictly Le-pseudoconvez;

(6) The equation Ou = f always has a solution

u€ CP (D), feCT, 11)(D),0f =0,q=0,1,...,n~1.

PROOF. The detail proof of equivalent conditions may be found in
L. Hormander [7] and S. G. Kranz [9]

THEOREM 3.6 (LEVI PROBLEM). Pseudoconver is holomorphacally
convez.

PROOF. By Theorem 3.5, D is G-pseudoconvex. That is, for every
¢ € R, there exist ¢ € C°(D) and strictly PS(D) such that D, =
{z € D: () < ¢} € D. Let K be any compact set in D and
let ¢ = max@(K) + 1 then K C D.. We only have to prove that
DCO(D) C D.. Then IA(O(D) C DCO(D) C Do €D, VC’(> C) € R.
Hence, D is holomorphically convex.
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4. Stein spaces

We introduce a class of complex analytic spaces (generally, manifolds
C reduced complex spaces C complex spaces C ringed spaces), whose
definition is modeled on the properties of domains of a holomorphy in
C". We reprove the Levi problem in complex spaces.

DEFINITION 4.1. Complex space D is called a Stein space (or holo-
morphically complete space) if it satisfies'the conditions:

(1) D is holomorphically convex.

(2) D is holomorphically separable. That is, for z # y € D there
exists an f € OQ(D) such that f{z) # f(y).

(3) Every connected component of D has a countable topology. That
is, there exists a countable basis of open sets.

DEFINITION 4.2. We call L a B-set in D, if for every coherent an-
alytic sheaf F defined near L, and every ¢ > 1, H4(L,F) = 0. Open
B-set in D are also called B-spaces.

THEOREM 4.3. (Exhaustion theorem) [8] The following statements
about a complex space DD are equivalent:
(1) D is a B-space;

(2) There exists an exhaustion D = oLclej with open B-sets D, €
j:
D,y in D such that each (D,4,,D,) is a Runge pair.

THEOREM 4.4. (Characterization of Stein spaces) (8] If D C C™ be
a domain then the following are equivalent:

(1) D is holomorphically convex;

(2) D is a Stein space;

(3) D is weakly holomorphically convex;

(4) HY(D,TI) = 0 for every coherent ideal 7 in pO such that the
zero set N (Z) is discrete;

(5) D is a B-space;

(6} Every a € 8D admits a neighborhood U in €" such that DNU
is Stein;

(7) There exists an exhaustion D = ;E_Jol D, by open subsets D), €

D, 11 @ D that are Stein;
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(8) Every hyperplane section H of D in C™ is Stein, and the induced
restriction-homomorphism pO(D) — yO(H) is surjective;

(9) Every hyperplane section H of D in C" is Stein, and every
additive Cousin problem on IJ has a solution;

(10) For every complex line E in C™, the restriction-homomorphism
pO(D) — preO(D N E) is surjective;

{11) The sequence

0—-OD)—-EMDE@>>>...@>8>>&E(D) -0

is exact;
(12) HY(D,0)=0forg=1,...,n — 1;
(18) For f1,...,fm € O(D) without common zeros, there exist

m
91,-- - gm € O(D) such that 1 = 3 f,9,;
2=1
{14) The mapping € : D — S,{D), z — ¢, is surjective.

Now we reprove the Levi problem in complex spaces.

THEOREM 4.5. Every pseudoconvex domain in C™ is holomorpically
convezr.

PROOF. Fix astrictly pseudoconvex exhaustion D = UD, satisfying
the following two conditions for each j:

(1) D, e D_7+1a and

(2) There exists a strictly plurisubharmonic function ¢, € C*°(D, 41, R)
such that the intersection of [), with each connected component of D
is a connected component of {y, < 0}.

Then D, ; ={x € D, : ¢,_1(z) < 0} € D,, hence D,_; is Stein.
And i a strictly pseudoconvex domain in a Stein spsce D is of the
form U = {z € D : ¢(z) < 0} for an appropriate ¢ € C(D, R} which
is strictly subharmonic on D, then (D,U)} is a Runge pair of Stein
spaces. So, (D,, D,,) is a Runge pair of Stein spaces. Thus, Theorem
4.3 implies that D is B—space and by Theorem 4.4, we have the result
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