SUBMANIFOLDS OF CODIMENSION 2 OF ODD-DIMENSIONAL SPHERES

Yong Ho Shin

Abstract

This paper is to show that a submanfold of codimension 2 of an odd-dimensional sphere with an almost contact metric structure is an intersection of a complex cone with generator as a normal vector and a sphere.

0. Introduction

A pseudo-umbilical submanifold of an even-dimensional Euclidean space $E^{2 n+4}$ with ($\left.f, g, u, v, w, \lambda, \mu, \nu\right)$-structure satisfying $\lambda^{2}+\mu^{2}+$ $\nu^{2}=1$ is an intersection of a complex cone with a generator and a sphere.

Also, the ($f, g, u, v, w, \lambda_{1}, \mu_{1}, \nu$)-structure is naturally induced on submanifolds of codimension 2 of an odd-dimensional sphere. In a previous paper [1], the author have studied the submanifold of codimension 2 of an odd-dimensional unit sphere and determined the global form of them by using minimal condition.

The purpose of the present paper is devoted to study some intrinsic properties of submanifolds of codimension 2 of an odd-dimensional sphere and determine the global form of them admitting an almost contact metric structure.

In Section 1, we discuss the differential geometry of $S^{2 n+1}(1)$.
Rererved June 29, 2000.
This author wishes to acknowledge the financial support of University of Ulsan made in the program year of 2000 .

In Section 2, we find some algebraic relations and structut $\cdot \boldsymbol{f q} 4: \sin$ of codimension 2 submanifolds of an odd-dimensional sphere.

In Section 3, we determine the global form of submanifolsis : t tmension 2 of an odd-dimensional sphere admitting an alrnert , it metric structure. We introduce the following Theorem for lati :

THEOREM A ([1]). Let $M^{2 n-1}$ be a $(2 n-1)$-dimensional sion? .ni-
 is minimal, then $M^{2 n-1}$ as a submantfold of codimension.; oj : $\ddagger u$ clidean space $E^{2 n+2}$ is pseudo-umbilical.

Theorem B ([2]). Let $M^{2 n+1}$ be a pseudo-umbilical submarufols: of an even-dimensional Eucludean space $E^{2 n+4}$ with (f, g, u, v, r^{\prime}. , ,)structure satisfying $\lambda^{2}+\mu^{2}+\nu^{2}=1$. Then $M^{2 n+1}$ is an intel: : con of a complex cone with a generator as a normal vector and ashr e.

1. Differential geometry of $S^{2 n+1}(1)$

Let $E^{2 n+2}$ be a $(2 n+2)$-dimensional Euclidean space aud ' ' the origin of the cartesian coordinate system in $E^{2 n+2}$, and denot: iy X the position vector of a point P in $E^{2 n+2}$ with respect to the ongin.

We consider a sphere $S^{2 n+1}(1)$ with center at O and radius 1 and suppose that $S^{2 n+1}(1)$ is covered by a system of coordinate neighborhoods $\left\{U ; x^{h}\right\}$. Here and in the sequel, the indices h, i, j, k, \cdots run over the range $\{1,2, \cdots, 2 n+1\}$. Then $X \cdot X=1$ for the position vector X at each point in $S^{2 n+1}(1)$, where the dot denotes the nner product of two vectors in a Euclidean space. Now we put $X_{2}=\vartheta_{2} X$, $C=-X, g_{\imath \jmath}=X_{2} \cdot X_{3}$ where $\partial_{\imath}=\partial / \partial x^{2}$, and denote by ∇_{\imath} the operator of covariant differentiation form with the metric tensor $g_{2 j}$. Then the equations of Gauss and Weingarten are respectively given by

$$
\begin{equation*}
\nabla_{\mathfrak{j}} X_{\imath}=g_{\mathfrak{\jmath}} C, \quad \nabla_{\imath} C=-X_{2} \tag{1.1}
\end{equation*}
$$

from which we can easily derive

$$
\begin{equation*}
K_{k_{2}}^{h}=\delta_{k}^{h} g_{\jmath^{2}}-\delta_{\jmath}^{h} g_{k_{2}} \tag{1.2}
\end{equation*}
$$

which are the equations of Gauss, $K_{k_{32}}{ }^{h}$ being the component of the curvature tensor of $S^{2 n+1}(1)$.

In $E^{2 n+2}$, there exists a natural Kaehlerian structure $F=\left(\begin{array}{cc}0 & -E \\ E & 0\end{array}\right)$, E being the unit matrix of degree $n+1$. It follows that

$$
F^{2}=-I, F U \cdot F V=U \cdot V
$$

for arbitrary vectors U and V in $E^{2 n+2}$, where I denotes the identity transformation in $E^{2 n+2}$. Transformating X_{3}, C by F, we get

$$
\begin{equation*}
F X_{3}=f_{3}^{t} X_{t}+u_{3} C, \quad F C=-u^{t} X_{t} \tag{1.3}
\end{equation*}
$$

where f_{z}^{h} are the component of a tensor field of type (1.1), u_{\imath} is 1 -form on $S^{2 n+1}(1), u^{h}$ is given by $u^{h}=u_{t} g^{t h}$.

Applying F to (1.3), respectively, we get an almost contact metric structure
(1.4) $\left\{\begin{array}{l}f_{t}^{h} f_{\imath}^{t}=-\delta_{2}^{h}+u_{2} u^{h}, \\ f_{2}^{t} u_{t}=0, u^{t} u_{t}=1, \\ f_{\imath}^{t} f_{3}^{h} g_{t h}=g_{\imath \jmath}-u_{\imath} u_{\jmath} .\end{array}\right.$

It is easily verified that $f_{3 \imath}=f_{3}^{h} g_{2 h}$ is skew-symmetric in j and i.
Differentiating (1.3) covariantly and using $\nabla F=0$, we have

$$
\left\{\begin{array}{l}
\nabla_{\jmath} f_{2}^{h}=-g_{\jmath 2} u^{h}+\delta_{\jmath}^{h} u_{2}, \tag{1.5}\\
\nabla_{\jmath} u_{2}=f_{y_{2}} .
\end{array}\right.
$$

Thus, $S^{2 n+1}(1)$ admits the Sasakian structure.

2. Structure equations of codimension 2 submanifolds

Let $M^{2 n-1}$ be a $(2 n-1)$-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\left\{V ; y^{a}\right\}$ and immersed isometrically in $S^{2 n+1}(1)$ by an immersion $i: M^{2 n-1} \rightarrow S^{2 n+1}(1)$, where here and in the sequel the indices a, b, c, d, \cdots run over the range $\{1,2, \cdots, 2 n-1\}$. We identify $\imath\left(M^{2 n-1}\right)$ with $M^{2 n-1}$ itself and represent the immersion by

$$
x^{h}=x^{h}\left(y^{a}\right)
$$

We put $B_{c}^{h}=\partial_{c} x^{h}, \partial_{c}=\partial / \partial y^{c}$. Then each B_{c}^{h} is a $2 n-1$ linearly independent vector of $S^{2 n+1}(1)$ tangent to $M^{2 n-1}$. And let D^{h} and E^{h} be mutually orthogonal unit normals to $S^{2 n+1}(1)$. Then, denoting by $g_{c b}$ the components of the induced metric tensor of $M^{2 n-1}$, we have $g_{c b}=g_{\jmath \imath} B_{c}^{\jmath} B_{b}^{2}$ since the immersion is isometric.

As to transforms of B_{c}^{3}, D^{\jmath} and E^{3} by f_{j}^{h}, we have respectively
(2.1) $\left\{\begin{array}{l}f_{\jmath}^{h} B_{c}^{\jmath}=f_{c}^{a} B_{a}^{h}+v_{c} D^{h}+w_{c} E^{h}, \\ f_{j}^{h} D^{\jmath}=-v^{a} B_{a}^{h}-\lambda E^{h}, \\ f_{\jmath}^{h} E^{\jmath}=-w^{a} B_{a}^{h}+\lambda D^{h},\end{array}\right.$
where f_{c}^{a} denote the components of a tensor field of type (1.1), v_{c}, $w_{c} 1$-forms and λ a function in $M^{2 n-1}, v^{a}$ and w^{a} being vector fields associated with v_{a} and w_{a}, respectively.

We may put the vector field u^{h} as follows:
(2.2) $u^{h}=u^{a} B_{a}^{h}+\mu D^{h}+\nu E^{h}$,
where u^{a} is a vector field, μ and ν are functions in $M^{2 n-1}$.
Applying the operator f_{h}^{k} to (2.1) and (2.2) respectively, and using (1.4), we obtain the so-called ($f, g, u, v, w, \lambda, \mu, \nu)$-structure as follows:
(2.3) $f_{b}^{e} f_{e}^{a}=-\delta_{b}^{a}+u_{b} u^{a}+v_{b} v^{a}+w_{b} w^{c}$,

$$
\left\{\begin{array}{l}
f_{e}^{a} u^{e}=\mu v^{a}+\nu w^{a} \tag{2.4}\\
f_{e}^{a} v^{e}=-\mu u^{a}+\lambda w^{a} \\
f_{e}^{a} w^{e}=-\nu u^{a}-\lambda v^{a}
\end{array}\right.
$$

or

$$
u_{e} f_{c}^{e}=-\mu v_{c}-\nu w_{c}, \quad v_{e} f_{c}^{e}=\mu u_{c}-\lambda w_{c}, \quad w_{e} f_{c}^{e}=\nu u_{c}+\lambda v_{c}
$$

$$
\left\{\begin{array}{l}
u_{e} u^{e}=1-\mu^{2}-\nu^{2}, u_{e} v^{e}=-\lambda \nu \tag{2.5}\\
u_{e} w^{e}=\lambda \mu, v_{e} v^{e}=1-\lambda^{2}-\mu^{2} \\
v_{e} w^{e}=-\mu \nu, w_{e} w^{e}=1-\lambda^{2}-\nu^{2}
\end{array}\right.
$$

where u_{c}, v_{c} and w_{c} are 1 -forms associated with u^{a}, v^{a} and w^{a} respectively. We can easily verify that $f_{c b}=f_{c}^{a} g_{b a}$ is skew-symmetric because f_{32} is skew-symmetric. Transvecting the last equation of (1.4) with $B_{c}^{3} B_{b}^{2}$, making use of (2.2) and the definition of the induced metric tensor $g_{c b}$, we have

$$
f_{c}^{e} f_{b}^{d} g_{e d}=g_{c b}-u_{c} u_{b}-v_{c} v_{b}-w_{c} w_{b} .
$$

Denoting by ∇_{c} the operator of the van der Waerden-Bortotti covarıant differentiation, we can write the equation of Gauss for $M^{2 n-1}$ as

$$
\begin{equation*}
\nabla_{c} B_{b}^{h}=k_{c b} D^{h}+l_{c b} E^{h} \tag{2.6}
\end{equation*}
$$

where $k_{c b}$ and $l_{c b}$ are the second fundamental tensors with respect to D^{h} and E^{h}, respectively.

The equations of Weingarten are given by

$$
\begin{equation*}
\nabla_{c} D^{h}=-k_{c}^{b} B_{b}^{h}+l_{c} E^{h} \tag{2.7}
\end{equation*}
$$

$\nabla_{c} E^{h}=-l_{c}^{b} B_{b}^{h}-l_{c} D^{h}$,
where $k_{c}^{b}=k_{c a} g^{a b}, l_{c}^{b}=l_{c a} g^{a b},\left(g^{a b}\right)=\left(g_{a b}\right)^{-1}, l_{c}$ being the third fundamental tensor. The normal vector field D^{h} is said to be parallel in the normal bundle if l_{c} vanishes identically. Then, from (1.2), the equation of Gauss is given by

$$
K_{d c b}{ }^{a}=\delta_{d}^{a} g_{c b}-\delta_{c}^{a} g_{d b}+k_{d}^{a} k_{c b}-k_{c}^{a} k_{d b}+l_{d}^{a} l_{c b}-l_{c}^{a} l_{d b} .
$$

By differentiating (2.1) and (2.2) covariantly along $M^{2 n-1}$ and taking account of (15), (2.2), (2.6), (2.7) and (2.8), we find
(2.9) $\nabla_{b} f_{c}^{a}=-g_{b c} u^{a}+\delta_{b}^{a} u_{c}+k_{b}^{a} v_{c}-k_{b c} v^{a}+l_{b}^{a} w_{c}-l_{b c} w^{a}$,
(2.10) $\quad \nabla_{b} v_{c}=-\mu g_{b c}+\lambda l_{b c}-k_{b a} f_{c}^{a}+l_{b} w_{c}$,
(2.11) $\quad \nabla_{b} w_{c}=-\nu g_{b c}-\lambda k_{b c}-l_{b a} f_{c}^{a}-l_{b} v_{c}$,

$$
\begin{align*}
& \nabla_{b} u^{a}=f_{b}^{a}+\mu k_{b}^{a}+\nu l_{b}^{a}, \tag{2.12}\\
& \nabla_{b} \lambda=k_{b}^{a} w_{a}-l_{b a} v^{a},
\end{align*}
$$

$$
\begin{aligned}
\nabla_{b} \mu & =v_{b}-k_{b a} u^{a}+\nu l_{b} \\
\nabla_{b} \nu & =w_{b}-l_{b a} u^{a}-\mu l_{b}
\end{aligned}
$$

3. Almost contact metric structure

In this section, we assume that $M^{2 n-1}$ admits an almost contact metric structure ($f_{b}^{a}, g_{c b}, u^{a}$), that is, $M^{2 n-1}$ satisfies

$$
\begin{equation*}
f_{b}^{a} f_{e}^{a}=-\delta_{b}^{a}+u_{b} u^{a} \tag{3.1}
\end{equation*}
$$

(3.2) $\quad u_{a} u^{a}=1$.

From (2.3), (2.5), and (3.1), we see

$$
\begin{equation*}
\left(1-\lambda^{2}-\mu^{2}\right)+\left(1-\lambda^{2}-\nu^{2}\right)=0 \tag{3.3}
\end{equation*}
$$

On the other hand, (2.5) and (3.2) implies that

$$
\begin{equation*}
\mu=0, \quad \nu=0 \tag{3.4}
\end{equation*}
$$

Substituting (3.4) into (3.3), we find

$$
\begin{equation*}
\lambda^{2}=1 \tag{3.5}
\end{equation*}
$$

Thus we have:
LEMMA 1. Let $M^{2 n-1}$ be a (2n-1)-dimensional submanifold of codimension 2 of an odd-dımensional unit sphere $S^{2 n+1}(1)$ with $(f, g, u, v, w$, $\lambda, \mu, \nu)$-structure. If $M^{2 n-1}$ admits an almost contact metric structure $\left(f_{c}^{a}, g_{c b}, u^{a}\right)$, then we have $\lambda^{2}+\mu^{2}+\nu^{2}=1$ on $M^{2 n-1}$.

From (2.5) we have, with the aid of (3.4) and (3.5),
(3.6) $\quad v^{a}=0, \quad w^{a}=0$.
(2.9) and (2.12) implies that

$$
\nabla_{b} f_{c}^{a}=-g_{b c} u^{a}+\delta_{b}^{a} u_{c}, \quad \nabla_{b} u^{a}=f_{b}^{a}
$$

with aid of (3.6).
Thus the aggregate ($f_{c}^{a}, g_{c b}, u^{a}$) defines a Sasakian structure. Hence, we obtain:

THEOREM 2. Under the same assumptions as those stated in Lemma 1, $M^{2 n-1}$ admits a Sasakian structure.

Substituting (3.4) and (3.6) into (2.10), we find

$$
\lambda l_{b c}-k_{b a} f_{c}^{a}=0
$$

from which, contracting this equation with respect to b and c taking account of (3.5), we get
(3.7) $\quad l_{b}^{b}=0$,
because $k_{c b}$ are symmetric and $f_{c b}$ is skew-symmetric with respect to b and c.

From (2.11), (3.4), (3.6) and (3.5), we have
(3.8) $k_{b}^{b}=0$.

The mean curvature vector is given by

$$
H^{h}=\frac{1}{2 n-1} g^{b a} \nabla_{b} B_{a}^{h}=\frac{1}{2 n-1}\left(k_{a}^{a} D^{h}+l_{a}^{a} E^{h}\right)
$$

This equation together with (3.7) and (3.8) becomes

$$
H^{h}=0
$$

which shows that $M^{2 n-1}$ is a minimal submanifold.
Therefore, we obtain:
Theorem 3. Under the same assumptions as those stated in Lemma $1, M^{2 n-1}$ is a menumal submantfold.

Combining Theorem A and Theorem 3 , we find
Theorem 4. Under the same assumptions as those stated in Lemma 1, $M^{2 n-1}$ as a submanifold of codimension 3 of the Eucludean space $E^{2 n+2}$ is pseudo-umblical.

Hence, by making use of Theorem B, Lemma 1 and Theorem 4, we conclude :

THEOREM 5. Let $M^{2 n-1}$ be a (2n-1)-dimensional submanifold of codimension 2 of an odd-dimensional spheres $S^{2 n+1}(1)$ with $(f, g, u, v, w$, $\lambda, \mu, \nu)$-structure. If $M^{2 n-1}$ admits an almost contact metric structure $\left(f_{c}^{a}, g_{c b}, u^{a}\right)$ and $n>1$, then $M^{2 n-1}$ as a submanifold of codimension 3 of Euclidean space $E^{2 n+2}$ is an intersection of a complex cone with a generator as a normal vector C and a ($2 n+1$)-dimensional unit sphere $S^{2 n+1}(1)$.

References

[1] Y. H. Shin, Codimension 2 submanafolds of $S^{2 n+1}$, East Asian Math. Comm. 1 (1998), 139-144.
[2] K. Yano and Ki. U-H., On (f,g,u,v,w, λ, μ, ν)-structure satisfynng $\lambda^{2}+$ $\mu^{2}+\nu^{2}=1$, Kodai Math. sem rep. 29 (1978), 285-307.

Department of Mathematics
University of Ulsan
Ulsan 680-749, Korea
E-mail: yhshin@uou.ulsan.ac.kr

