BOUNDARY DISTORTION OF CERTAIN DOMAINS IN $\overline{\mathbb{R}}^{n}$

Kıwon Kim

1. Introduction

Suppose that D is a domain in the extended complex plane $\overrightarrow{\mathbb{R}}^{n}$. For each $z_{0} \in \mathbb{R}^{n}$ and $0<r<\infty$, we let $B\left(z_{0}, r\right)=\left\{z \in \mathbb{R}^{n}:\left|z-z_{0}\right|<r\right\}$, $S\left(z_{0}, r\right)=\partial B\left(z_{0}, r\right)$, and $B^{*}\left(z_{0}, r\right)=\left\{z \in \overline{\mathbb{R}}^{n}:\left|z-z_{0}\right|>r\right\}$.

For non-empty sets $A, B \subset \overline{\mathbb{R}}^{n}, \operatorname{diam}(A)$ is the diameter of A and $d(A, B)$ is the distance of A and B.

A domain D in $\overline{\mathbb{R}}^{n}$ is a K-quasiball, $1 \leq K<\infty$, if it is the image of the unit ball $\mathrm{B}(0,1)$ under a K - quasiconformal self mapping f of $\overline{\mathbb{R}}^{n}$. The boundary S of a K-quasiball D is called a K-quasisphere. For $n=2$ we call the domain a quasidisk, and call the boundary of a K-quasidisk D a K-quasicircle($[1,6]$).

Next we say that a Jordan curve C in $\overline{\mathbb{R}}^{2}$ has circular distortion c, $1 \leq c<\infty$, if for each Möbius transformation ϕ, either $\phi(C)$ separates the boundary circles of an annulus

$$
A=A\left(z_{0} ; r, s\right)=\left\{z \in \mathbb{R}^{2}: r \leq\left|z-z_{0}\right| \leq s\right\}
$$

wath radii ratio $\frac{s}{r}=c$ or $\phi(C)$ contains the point ∞. The circular distortion is a Möbius invariant which measures how far a Jordan curve differs from being a circle or line. In particular, C has circular distortion 1 if and only if it is a circle or line.

[^0]R. Kühnau established the following relation between these two concepts.

Lemma 1.1. [5] If C is a K-quasicircle in $\overline{\mathbb{C}}$, then C has circular distortion c, where c depends anly on K.
R. Kühnau found sharp bounds for the constant c in terms of K and then asked if the converse of lemma 1.1 is true, that is, if C is a curve with circular distortion c, then it is a K-quasicircle where K depends only on c. F. W. Gehring and C. Pommerenke [3] answered this question as follows.

Lemma 1.2. [3] If C is a Jordan curve in $\overline{\mathbb{R}}^{2}$ with circular distortion $c<\sqrt{2}$, then C is a K-quasicircle where K depends only on c.

Their proof was based on elementary classical properties of the exterior conformal mapping $g: B^{*}(0,1) \rightarrow \operatorname{ext}(C)$, defined by

$$
g(z)=z+\sum_{0}^{\infty} b_{y} z^{-3} .
$$

Next lemma plays an important role in proving Lemma 1.2.
Lemma 1.3. [3] If C is a Jondan curve in $\overline{\mathbb{R}}^{2}$ which separates the boundary circles of an annulus A with radii ratio c and if g maps $B^{*}(0,1)$ onto $\operatorname{ext}(C)$, then

$$
\begin{equation*}
\left|b_{1}\right| \leq \frac{c^{2}-1}{c^{2}+1} . \tag{1.4}
\end{equation*}
$$

Remark 1.5. [3] The mapping

$$
g(z)=z+\frac{c-1}{c+1} \frac{1}{z}
$$

shows that one can not replace the upper bound in (1.4) by anything less than $\frac{c-1}{c+1}$.

One of the main purposes of this paper is to give some other extreme examples for the constant $\left|b_{1}\right|$ in Lemma 1.3(see Section 2).

The bound $c<\sqrt{2}$ in Lemma 1.2 is not sharp [3]. While we looked for the sharp bound of c and another example of a Jordan curve C in $\overline{\mathbb{C}}$ with finite circular distortion c which is not a quasicircle, K. Kim found one more geometric condition, so-called the double disk property, which is in between a quasicircle and circular distortion [4].

We say that a topological n -sphere S in $\overline{\mathbb{R}}^{n}$ has the double ball property if there exists a constant $b, 1 \leq b<\infty$, such that for each $z_{0} \in S$ and $0<r \leq \operatorname{diam}(S)$, there exist open balls B_{2} and B_{e} in \mathbb{R}^{n} with

$$
B_{\imath} \subset \operatorname{int}(S), \quad B_{e} \subset \operatorname{ext}(S), \quad B_{2} \cup B_{e} \subset B\left(z_{0}, r\right),
$$

$$
\begin{equation*}
b \operatorname{diam}\left(B_{\imath}\right) \geq r, \quad b \operatorname{diam}\left(B_{e}\right) \geq r \tag{1.6}
\end{equation*}
$$

where $\operatorname{int}(\mathrm{S})$ and $\operatorname{ext}(\mathrm{S})$ are interior and exterior of S , respectively.
If we replace a topological n -sphere S in $\overline{\mathbb{R}}^{n}$ by a Jordan curve C in \mathbb{R}^{2} and replace open balls by open disks, then we say that a Jordan curve C in \mathbb{R}^{2} has the the double disk property.

It is also equivalent to asking that for $0<r \leq \operatorname{diam}(S)$ (or $\operatorname{diam}(C)$), each point z of S (or C) should subtend balls (or disks) of a fixed visual angle in each complementary domain of S (or C) within distance r of z. Again the constant b in (1.6) measures how far S (or C) differs from being a n-sphere (or circle), respectively. In particular, $b=1$ if and only if S (or C) is n-sphere (or circle), respectively.

In [4] K. Kim established relations between the double disk property, quasicircle and circular distortion.

Lemma 1.7. [4] If C is a K-quasicircle in \mathbb{R}^{2}, then C has the double disk property with constant b, where b depends only on K. If C has the double disk property with constant b, then C has circular distortion $c=16 b$.

We say that a topological n -sphere S in $\overline{\mathbb{R}}^{n}$ has spherical distortion c, $1 \leq c<\infty$, if for each Möbius transformation ϕ, either $\phi(S)$ separates the boundary spheres of a spherical annulus

$$
A=A\left(z_{0} ; r, s\right)=\left\{z \in \mathbb{R}^{n}: r \leq\left|z-z_{0}\right| \leq s\right\}
$$

with radii ratio $\frac{s}{r}=c$ or $\phi(S)$ contains the point ∞. It is well known fact that S is a 1 -quasisphere if and only if S is a plane or n -sphere if and only if S has spherical distortion 1.

In Section 3, we give higher dimensional analogues of Lemmas 1.1 and 1.7 to the case of quasisphere as follows. If S is a K-quasisphere in $\overline{\mathbb{R}}^{n}$, then S has spherical distortion c, where c depends only on K. If S is a K-quasisphere in $\overline{\mathbb{R}}^{n}$ then S has the double ball property with constant b, where b depends only on K.

Next we say that a domain D in \mathbb{R}^{n} is called an (α, β)-John domain, $0<\alpha \leq \beta<\infty$, if there is $z_{0} \in D$ such that for each $z \in D, z$ has a rectifiable curve $\gamma:[0, \ell] \rightarrow D$, with arc length as parameter $\gamma(0)=z, \gamma(\ell)=z_{0}, \ell \leq \beta$, and $d(\gamma(t), \partial D) \geq \frac{\alpha}{\ell} t$, for all $t \in[0, \ell]$. We call z_{0} a John center (see [7]).

A simply connected John domain D in \mathbb{R}^{2} is called an (α, β)-John disk. John disks can be thought of "one-sided quasidisk" $[9,10]$. For example, a Jordan domain in the plane is a quasidisk if and onlt if D and $D^{*}=\overline{\mathbb{R}}^{2} \backslash \bar{D}$ are John disks [9]. In [4] K. Kim showed that a John disk satisfies the one-sided analogue of the double disks property of quasidisks.

Lemma 1.8. [4] If a Jordan curve C in \mathbb{R}^{2} is the boundary of a (α, β)-John disk D, then there exists a constant $b, 1 \leq b<\infty$, such that for each $w \in C$ and $0<r \leq \operatorname{diam}(C)$, there is an open disk B with

$$
B \subset \operatorname{int}(C), \quad B \subset B(w, r), \quad b \operatorname{diam}(B) \geq r,
$$

where b depends only on α and β.
In Section 4, we also give higher dimensional analogue of Lemma 1.8 to the case of John domain in \mathbb{R}^{n}.
2. Some extreme examples for the constant $\left|b_{1}\right|$ in lemma 1.3

Example 2.1. Suppose that C is a boundary curve of a simply connected domain $D=B(0,1) \backslash\left\{\left[-1,-\frac{1}{c}\right] \cup\left[\frac{1}{c}, 1\right]\right\}, 1 \leq c<\infty$. Suppose also that f maps $B(0,1)$ conformally onto D with $f(0)=0, f^{\prime}(0)>0$.

Then the mapping

$$
g(\zeta)=\frac{f^{\prime}(0)}{f\left(\frac{1}{\zeta}\right)}
$$

shows that one can not replace the upper bound in (1.4) by anything less than $\left(\frac{c^{2}-1}{c^{2}+1}\right)^{2}$.

Proof. Let

$$
h: \overline{\mathbb{R}}^{2} \backslash[-1,1] \rightarrow \overline{\mathbb{R}}^{2} \backslash\left[-\frac{1}{2}\left(c+\frac{1}{c}\right), \frac{1}{2}\left(c+\frac{1}{c}\right)\right], \quad h(w)=\frac{1}{2}\left(c+\frac{1}{c}\right) w
$$

and let

$$
\begin{gathered}
k_{1}: B(0,1) \rightarrow \overline{\mathbb{R}}^{2} \backslash[-1,1], \quad k_{2}: D \rightarrow \overline{\mathbb{R}}^{2} \backslash\left[-\frac{1}{2}\left(c+\frac{1}{c}\right), \frac{1}{2}\left(c+\frac{1}{c}\right)\right] \\
k_{\imath}(w)=\frac{1}{2}\left(w+\frac{1}{w}\right), \quad i=1,2
\end{gathered}
$$

Then g maps $B^{*}(0,1)$ onto $\operatorname{ext}\left(\frac{f^{\prime}(0)}{f(C)}\right)$ and $h \circ k_{1}=k_{2} \circ f$. Therefore

$$
S_{h \circ k_{1}}(z)=S_{k_{2} \circ f}(z)
$$

for each $z \in B(0,1)$, where $S_{f}(z)=\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}$ is the Schwarzian derivative of f. Thus

$$
S_{h}\left(k_{1}(z)\right)\left(k_{1}^{\prime}(z)\right)^{2}+S_{k_{1}}(z)=S_{k_{2}}(f(z))\left(f^{\prime}(z)\right)^{2}+S_{f}(z)
$$

Since $S_{h}\left(k_{1}(z)\right)=0$, we get

$$
\frac{-6}{\left(z^{2}-1\right)^{2}}=\frac{-6}{\left(f(z)^{2}-1\right)^{2}}\left(f^{\prime}(z)\right)^{2}+S_{f}(z)
$$

Hence

$$
\begin{equation*}
S_{f}(z)=\frac{-6}{\left(z^{2}-1\right)^{2}}+\frac{6}{\left(f(z)^{2}-1\right)^{2}}\left(f^{\prime}(z)\right)^{2} \tag{2.2}
\end{equation*}
$$

Since

$$
\begin{aligned}
f(z) & =k_{2}^{-1} \circ h \circ k_{1}(z) \\
& =\frac{1}{4}\left(c+\frac{1}{c}\right)\left(z+\frac{1}{z}\right)-\sqrt{\frac{1}{4^{2}}\left(c+\frac{1}{c}\right)^{2}\left(z+\frac{1}{z}\right)^{2}-1},
\end{aligned}
$$

by L'Hospital's rule we have

$$
\lim _{z \rightarrow 0}\left(\frac{f^{\prime}(z)}{(f(z))^{2}-1}\right)^{2}=4\left(\frac{c}{c^{2}+1}\right)^{2} .
$$

Thus by (2.2)

$$
S_{f}(0)=-6+24\left(\frac{c}{c^{2}+1}\right)^{2} .
$$

Let $g(\zeta)=\zeta+\sum_{0}^{\infty} b_{3} \zeta^{-3}$. Then by [2] and [3],

$$
b_{1}=-\frac{1}{6} S_{f}(0)=\left(\frac{c^{2}-1}{c^{2}+1}\right)^{2} .
$$

Therefore one can not replace the upper bound in (1.4) by anything less than $\left(\frac{c^{2}-1}{c^{2}+1}\right)^{2}$.

Example 2.3. Suppose that C ws a boundary curve of a simply connected domain $D=B(0,1) \backslash\left[\frac{1}{c}, 1\right], 1 \leq c<\infty$. Suppose also that f maps $B(0,1)$ conformally onto D with $f(0)=0, f^{\prime}(0)>0$. Then the mapping

$$
g(\zeta)=\frac{f^{\prime}(0)}{f\left(\frac{1}{\zeta}\right)}
$$

also shows that one can not replace the upper bound in (1.4) by anything less than $\left(\frac{c-1}{c+1}\right)^{2}\left(1+\frac{4 c}{(c+1)^{2}}\right)$.

Proof. Let

$$
\left.h: \overline{\mathbb{R}}^{2} \backslash\left(\frac{1}{4}, \infty\right) \rightarrow \overline{\mathbb{R}}^{2} \backslash \frac{c}{(c+1)^{2}}, \infty\right), \quad h(w)=\frac{4 c}{(c+1)^{2}} w
$$

Let

$$
k_{1}: B(0,1) \rightarrow \overline{\mathbb{R}}^{2} \backslash\left[\frac{1}{4}, \infty\right) \quad k_{2}: D \rightarrow \overline{\mathbb{R}}^{2} \backslash\left[\frac{c}{(c+1)^{2}}, \infty\right),
$$

and

$$
k_{\imath}(w)=\frac{w}{(1+w)^{2}}, \quad i=1,2
$$

Then g maps $B^{*}(0,1)$ onto $\operatorname{ext}\left(\frac{f^{\prime}(0)}{f(C)}\right)$ and $h \circ k_{1}=k_{2} \circ f$. Therefore

$$
S_{h \circ k_{1}}(z)=S_{k_{2} \circ f}(z)
$$

for each $z \in B(0,1)$. With the same procedure as we have done for the identity (2.2) and the following equality,

$$
\frac{f(z)}{(1+f(z))^{2}}=\frac{4 c}{(c+1)^{2}} \frac{z}{(1+z)^{2}},
$$

we obtain

$$
\begin{equation*}
f(z)(1+z)^{2}=\frac{4 c}{(c+1)^{2}} z(1+f(z))^{2} \tag{2.4}
\end{equation*}
$$

By (2.4) and by $f(0)=0$, we get

$$
\frac{f^{\prime}(0)}{1-(f(0))^{2}}=\frac{4 c}{(c+1)^{2}}
$$

Thus

$$
S_{f}(0)=-6+6\left(\frac{4 c}{(c+1)^{2}}\right)^{2}
$$

Let $g(\zeta)=\zeta+\sum_{0}^{\infty} b_{y} \zeta^{-\jmath}$. Then

$$
\begin{aligned}
b_{1} & =-\frac{1}{6} S_{f}(0) \\
& =1-\left(\frac{4 c}{(c+1)^{2}}\right)^{2} \\
& =\left(\frac{c-1}{c+1}\right)^{2}\left(1+\frac{4 c}{(c+1)^{2}}\right)
\end{aligned}
$$

Therefore one can not replace the upper bound in (1.4) by anything less than $\left(\frac{c-1}{c+1}\right)^{2}\left(1+\frac{4 c}{(c+1)^{2}}\right)$.

Remark 2.5. By Example 2.1, Example 2.3 and Remark 1.5 one can not replace the upper bound in (1.4) by anything less than $\left(\frac{\mathrm{c}^{2}-1}{c^{2}+1}\right)^{2}$, $\left(\frac{c-1}{c+1}\right)^{2}\left(1+\frac{4 c}{(c+1)^{2}}\right)$ and $\frac{c-1}{c+1}$.

3. Quasisphere, the double ball property and spherical distortion

Theorem 3.1. If a topological n-sphere S is a K-quasisphere in $\overline{\mathbb{R}}^{n}$, then S has spherical distortion c, where c depends only on K.

Proof. Suppose that S is a K-quasisphere in $\overline{\mathbb{R}}^{n}$. Then there is a K-quaisiconformal self mapping f of $\overline{\mathbb{R}}^{n}$ which maps $S(0,1)$ onto S and $f(\infty)=\infty$. Let $w_{0}=f(0)$ and let

$$
s=\max _{|z|=1}\left|f(z)-w_{0}\right|, \quad r=\min _{|z|=1}\left|f(z)-w_{0}\right| .
$$

Then $\frac{g}{r} \leq \lambda(K)$, where $\lambda(K)=\frac{1}{16} e^{\pi K}-\frac{1}{2}+O\left(e^{-\pi K}\right)[6]$. Thus S separates boundary spheres of $A\left(w_{0} ; r, c r\right), c=\lambda(K)$. If ϕ is any Möbius transformation with $\phi(S) \subset \mathbb{R}^{n}$, then $g=\phi \circ f$ is also a K-quasiconformal mapping. Let $\zeta_{0}=\phi\left(w_{0}\right)$. We have an annulus $A\left(\zeta_{0} ; s, c s\right)$ whose boundary spheres are separated by $\phi(S)$. Therefore S has spherical distortion c, where c depends only on K.

Theorem 3.2. If S is a K-quasisphere in $\overline{\mathbb{R}}^{n}$, then S has the double ball property with constant b, where b depends only on K.

However the proof is similar to that of Lemma 1.7 in [4], but for the completeness we give the proof.

Proof. Fix $z_{0} \in S$ and $0<r \leq \operatorname{diam}(S)$. By hypothesis, there exists a K - quasiconformal self mapping f of $\overline{\mathbb{R}}^{n}$ which maps S onto an n-sphere S^{\prime}. By composing f with an auxiliary Möbius transformation we may further assume that $f(\infty)=\infty$ and hence

$$
f(\operatorname{int}(S))=\operatorname{int}\left(S^{\prime}\right)
$$

Let $w_{0}=f\left(z_{0}\right), B^{\prime}=f\left(B\left(z_{0}, r\right)\right)$ and let w_{2}, w_{e} and t_{i}, t_{e} denote the centers and radii of the largest balls in $B^{\prime} \cap \operatorname{int}\left(S^{\prime}\right), B^{\prime} \cap \operatorname{ext}\left(S^{\prime}\right)$ which are tangent to S^{\prime} at w_{0}, respectively Next set

$$
z_{\imath}=g\left(w_{\imath}\right), \quad z_{e}=g\left(w_{e}\right)
$$

where $g=f^{-1}$, and let

$$
\begin{array}{ll}
s_{\imath}=\max _{\left|w-w_{\imath}\right|=t_{\imath}}\left|g(w)-g\left(w_{\imath}\right)\right|, \quad r_{\imath}=\min _{\left|w-w_{\imath}\right|=t_{\imath}}\left|g(w)-g\left(w_{\imath}\right)\right|, \\
s_{e}=\max _{\left|w-w_{e}\right|=t_{e}}\left|g(w)-g\left(w_{e}\right)\right|, \quad r_{e}=\min _{\left|w-w_{e}\right|=t_{e}}\left|g(w)-g\left(w_{e}\right)\right| .
\end{array}
$$

Then by $[6$, Theorem 9.3$]$ we have

$$
\begin{equation*}
s_{2} \leq \lambda(K) r_{2}, \quad s_{e} \leq \lambda(K) r_{e} \tag{3.3}
\end{equation*}
$$

where $\lambda(K)$ is an increasing function of K with $\lambda(1)=1$. Finally let $B_{\imath}=B\left(z_{\imath}, r_{\imath}\right)$ and $B_{e}=B\left(z_{e}, r_{e}\right)$. Then by (3.3)

$$
\begin{aligned}
& \lambda(K) \operatorname{diam}\left(B_{2}\right) \geq 2 s_{\imath} \geq r, \quad B_{2} \subset \operatorname{int}(S) \cap B\left(z_{0}, r\right) \\
& \lambda(K) \operatorname{diam}\left(B_{e}\right) \geq 2 s_{e} \geq r, \quad B_{e} \subset \operatorname{ext}(S) \cap B\left(z_{0}, r\right)
\end{aligned}
$$

and hence B_{2} and B_{e} satisfy (1.6) with $b=\lambda(K)$.

4. John domains and the double ball property

LEMMA 4.1. [8] Suppose that D in \mathbb{R}^{n} is an (α, β)-John domain. If $0<t \leq \alpha$ and $z_{0} \in \partial D$, then

$$
d(z, \partial D) \geq \frac{\alpha}{\beta} t
$$

for some $z \in S\left(z_{0}, t\right) \cap D$.

Theorem 4.2. If a topological n-sphere S in \mathbb{R}^{n} is the boundary of $a(\alpha, \beta)$-John domain D, then there exists a constant $b, 1 \leq b<\infty$, and for each $w \in S$ and $0<r \leq \operatorname{diam}(S)$, there exists an open disk B with

$$
\begin{equation*}
B \subset \operatorname{int}(S), \quad B \subset B(w, r), \quad b \operatorname{diam}(B) \geq r \tag{4.3}
\end{equation*}
$$

where b depends only on α and β.
However the proof is similar to that of Lemma 1.8 in [4], but for the completeness we give the proof.

Proof. Let $z_{0} \in S$. First we consider the case $0<r \leq \alpha \leq$ $\operatorname{diam}(S)$. Then by Lemma 4.1 with $t=\frac{r}{2}$,

$$
d(z, S) \geq \frac{\alpha}{\beta} \cdot \frac{r}{2}
$$

for some $z \in S\left(z_{0}, \frac{r}{2}\right) \cap D$. Hence there exists an open disk $B=$ $B\left(z, \frac{\alpha}{2 \beta} r\right)$ such that $B \subset D \cap B\left(z_{0}, r\right)$ and

$$
\begin{equation*}
\frac{2 \beta}{\alpha} \operatorname{diam}(B) \geq r \tag{4.4}
\end{equation*}
$$

Secondly if $0<\alpha \leq r \leq \operatorname{diam}(S)$, then by what we proved above, we can choose an open disk B_{α} for α such that $B_{\alpha} \subset D \cap B\left(z_{0}, \alpha\right)$ and $\frac{2 \beta}{\alpha} \operatorname{diam}\left(B_{\alpha}\right) \geq \alpha$. Thus

$$
B_{\alpha} \subset D \cap B\left(z_{0}, r\right), \quad \operatorname{diam}(S) \frac{2 \beta}{\alpha} \operatorname{diam}\left(B_{\alpha}\right) \geq r \alpha
$$

Since $\operatorname{diam}(S) \leq 2 \beta$, we have

$$
\begin{equation*}
\left(\frac{2 \beta}{\alpha}\right)^{2} \operatorname{diam} B_{\alpha} \geq r \tag{4.5}
\end{equation*}
$$

Therefore by (4.4) and (4.5), we obtain (4.3) with $b=\left(\frac{2 \beta}{\alpha}\right)^{2}$.

References

[1] L. V. Ahlfors, Quaszconformal reflections, Acta Math. 109 (1963), 291-301.
[2] P. L. Duren, Unvvalent functzons, Springer-Verlag, 1983.
[3] F. W. Gehring and C. Pommerenke, Carcular distortion of curves and quaszcarcles, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 381-390.
[4] K. Kım, Circular distortıon and the double disk property of curves, J. Korean Math. Soc. 34 (1997), 43-55.
[5] R. Kunau, Eine geometrische Ezgenschaft quasikonformer Krezse, Rev. Roumane Math. Pures Appl. 32 (1987), 909-913.
[6] O. Lehto and K. Virtanen, Quasiconformal mappings in the plane, SpringerVerlag, 1973.
[7] O. Martio and J. Sarvas, Injectivnty theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), 383-401.
[8] O. Martı and M. Vuorinen, Whitney cubes, p-capacity and Minkowskı content, Expo. Math. 5 (1987), 17-40.
[9] R. Nakkı and J. Vassalì, John disks, Exposition. Math 9 (1991), 3-43.
[10] K. K. Ryu, Propertzes of John disks, Unveversity of Michigan Ph.D. Thesıs (1991).

Department of Mathematics
Silla University
Pusan 617-736, Korea

[^0]: Received June 29, 2000. Revised October 25, 2000.
 This paper was supported by NON-DIRECTED RESEARCH FUND, Silla University, 1998

