DUAL MIXED VOLUMES OF EQUICHORDAL CONVEX BODIES AND VOLUME PRODUCTS OF CENTROID BODIES

Young Soo Lee and Moonjeong Kim

Abstract

We evaluate the dual quermassintegrals of r-equichordal bodies and obtan the lower bound for the volume product of p-centroid body in E^{2}.

1. Introduction

Equichordal points were first studied many years ago. Fujiwara[2] and Yanagihara[9] noted that there are noncircular planar convex bodies containing one equichordal point. Kelly[5] constructed a whole family of such examples with one equichordal point. The natural generalization, the \imath-equichordal points for arbitrary i, are first defined explicitly in [3], but are implicit in many earlier papers.

We evaluate the dual quermassintegrals of \imath-equichordal bodies.
The p-centroid body of a star body was defined by Lutwak and Zhang[7]. They proved that if K is a star body (about the origin) in E^{n}, then for $1 \leq p \leq \infty$,

$$
\begin{equation*}
V(K) V\left(\Gamma_{p}^{*} K\right) \leq \omega_{n}^{2}, \tag{1}
\end{equation*}
$$

with equality if and only if K is an ellipsoid centered at the origin.
Recerved October 4, 2000.
2000 Mathematics Subject Classification: 52A20.
Key words and phrases: polar dual, dual mixed volume, r-equichordal body, p-centroid body.

We obtain the lower bound for the volume product of p-centroid body, not necessarily centered convex body, in E^{2}.

Our results is:
(i) Let K be an i-equichordal body with origin in E^{n} with constant c. Then

$$
\tilde{W}_{n-2}(K)=\frac{c}{2} \omega_{n}, \quad i \in\{1,2, \cdots, n\} .
$$

(ii) Let K be a convex body in E^{2} such that the center of approximating ellipsoid pair E_{\imath} and E_{o} is the origin. Then, for each real $p \geq 2$,

$$
V(K) V\left(\Gamma_{p}^{*} K\right) \geq(\sqrt{2}-1)^{4} \omega_{2}^{2}
$$

2. Preliminaries

A set E is said to be centered if $-x \in E$ whenever $x \in E$, and centrally symmetric if there is a vector c such that the translate $E-c$ of E by $-c$ is centered. In the latter case c is called a center of E.

By a convex body in $E^{n}, n \geq 2$, we mean a compact convex subset of E^{n} with nonempty interior. Let μ be a measure in E^{n} and E a bounded set in E^{n} of finite positive μ-measure. The centroid of E with respect to μ is the point

$$
c=\frac{1}{\mu(E)} \int_{E} x d \mu(x) .
$$

Let S^{n-1} denote the unit sphere centered at the origin in E^{n}, and write O_{n-1} for the ($n-1$)-dimensional volume of S^{n-1}. Let B be the closed unit ball in E^{n}, write ω_{n} for the n-dimensional volume of B. Note that,

$$
\omega_{n}=\pi^{n / 2} / \Gamma\left(1+\frac{n}{2}\right), \quad \text { and } O_{n-1}=n \omega_{n}
$$

For real $p \geq 1$, define $c_{n, p}$ by

$$
c_{n, p}=\frac{\omega_{n+p}}{\omega_{2} \omega_{n} \omega_{p-1}}
$$

For each direction $u \in S^{n-1}$, we define the support function $h(K, u)$ on S^{n-1} of the convex body K by

$$
h(K, u)=\sup \{u \cdot x \mid x \in K\}
$$

and the radial function $\rho(K, u)$ on S^{n-1} of the convex body K by

$$
\rho(K, u)=\sup \{\lambda>0 \mid \lambda u \in K\} .
$$

If $\rho(K, \cdot)$ is positive and continuous, call K a star body (about the origin), and write \mathcal{S} for the set of star bōdies (about the origin) of E^{n}. Two star bodies $K, L \in S$ are said to be dilated (of one another) if $\rho(K, u) / \rho(L, u)$ is independent of $u \in S^{n-1}$.
The polar body of a convex body K, denoted by K^{*}, is another convex body defined by

$$
K^{*}=\{y \mid x \cdot y \leq 1 \text { for all } x \in K\}
$$

It is easily verified that for convex bodies K_{1}, K_{2} in E^{n} there is an implication

$$
\begin{equation*}
K_{1} \subset K_{2} \Longrightarrow K_{2}^{*} \subset K_{1}^{*} \tag{2}
\end{equation*}
$$

The polar body has the well known property that

$$
h\left(K^{*}, u\right)=1 / \rho(K, u) \text { and } \rho\left(K^{*}, u\right)=1 / h(K, u)
$$

Let K_{j} be a convex body in E^{n} with $o \in K_{\jmath}, 1 \leq j \leq n$. Then we define the dual mixed volume $\tilde{V}\left(K_{1}, \cdots, K_{n}\right)$ by

$$
\begin{equation*}
\tilde{V}\left(K_{1}, \cdots, K_{n}\right)=\frac{1}{n} \int_{S^{n-1}} \rho\left(K_{1}, u\right) \cdots \rho\left(K_{n}, u\right) d u \tag{3}
\end{equation*}
$$

where $d u$ signifies the area element on S^{n-1}. Let

$$
\tilde{V}_{\imath}\left(K_{1}, K_{2}\right)=\bar{V}(\underbrace{K_{1}, \cdots, K_{1}}_{n-\imath}, \underbrace{K_{2}, \cdots, K_{2}}_{\imath}) .
$$

If K is a convex body in E^{n} with $o \in K$, the dual volume $\tilde{V}_{i}(K)$ and dual quermassintegral $\tilde{W}_{n-2}(K)$ of K are defined by

$$
\tilde{V}_{\imath}(K)=\tilde{W}_{n-\imath}(K)=\frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{\imath} d u .
$$

Thus $\tilde{V}_{\imath}(K)=\tilde{V}_{\imath}(B, K)$. When $i=0$, we have $\tilde{V}_{0}(K)=\kappa_{n}$, and when $i=n$, we have

$$
\begin{equation*}
\tilde{V}_{n}(L)=\frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n} d u=V(K) \tag{4}
\end{equation*}
$$

according to the formula for volume in polar coordinates.
Let K be a convex body in E^{n}. A pair of n-dimensional ellipsoids (E_{\imath}, E_{o}) is called an approximating pair for K, if $E_{\imath} \subset K \subset E_{o}$ and if E_{i} and E_{o} are homothetic, that is, they have parallel axes and have the same aspect ratio. We measure the quality $\lambda\left(E_{z}, E_{o}\right)$ of our approximating pair (E_{2}, E_{o}) as λ of an expansion $x \mapsto \lambda\left(x-x_{o}\right)+x_{o}$ (with center x_{o} and expansion factor λ).

3. i-equichordal bodies and dual quermassintegrals

Let $i \in R^{+}=\{x \mid x>0\}$ and K convex body in E^{n} with the origin. The i-chord function $\rho_{2}(K, u)$ is defined for $u \in S^{n-1}$ as follows:

$$
\rho_{\imath}(K, u)=\rho(K, u)^{\imath}+\rho(K,-u)^{\imath} .
$$

Suppose that K is a convex body in E^{n} and that there is a $c>0$ such that the i-chord function of K has the constant value c. Then K is called an i-equichordal body with constant c.

Theorem 1. Let K be an i-equichordal body with the origin in E^{n} with constant c. Then

$$
\bar{W}_{n-i}(K)=\frac{c}{2} \omega_{n}, \quad i \in\{1,2, \cdots, n\} .
$$

Proof. From the definition of the dual mixed volume, it follows that

$$
\tilde{W}_{n-2}(K)=\frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{2} d u=\frac{1}{n} \int_{S^{n-1}} \rho(K,-u)^{2} d u
$$

So

$$
\begin{aligned}
2 \tilde{W}_{n-2}(K) & =\frac{1}{n} \int_{S^{n-1}}\left(\rho(K, u)^{2}+\rho(K,-u)^{2}\right) d u \\
& =\frac{c}{n} \int_{S^{n-1}} d u \\
& =c \omega_{n}
\end{aligned}
$$

The proof is complete.

4. p-centroid bodies and volume products

For $K \in \mathcal{S}$ and real $p \geq 1$, the p-centroid body, $\Gamma_{p} K$, of K is the body whose support function is given by

$$
c_{n-2, p} h\left(\Gamma_{p} K, x\right)^{p}=\frac{\omega_{n}}{V(K)} \int_{S^{n-1}}|x \cdot v|^{p} \rho(K, v)^{n+p} d v
$$

for all $x \in E^{n}$.
The Minkowski integral inequality shows that $h_{\Gamma_{p} K}$ is the support function of a (centered) convex body. Note that the polar of $\Gamma_{p} K$ is denoted by $\Gamma_{p}^{*} K$.

From the definition of the p-centroid body we see that for $K \in \mathcal{S}$ and $\phi \in G L(n)$, so $\Gamma_{p} \phi(K)=\phi\left(\Gamma_{p} K\right)$. Thus if E is a centered ellipsoid, then

$$
\begin{equation*}
\Gamma_{p} E=E \tag{5}
\end{equation*}
$$

and for a star body K in E^{n} and a positive real number r

$$
\begin{equation*}
\Gamma_{p}(r K)=r \Gamma_{p} K \tag{6}
\end{equation*}
$$

We obtain the lower bound for the volume product of p-centroid body, not necessarily centered convex body, in E^{2}.

LEMMA 1. ([6]) For every centrally symmetric convex body M and every (not necessarily centrally symmetric) convex body C in E^{2}, there are two concentric affine images a and A of M with $a \subset C \subset A$ and quality $1+\sqrt{2}$.

Therefore we obtain the following special case.
REMARK 1. In the above lemma, for eillipsoid E and every (not necessarily centrally symmetric) convex body K in E^{2}, there are two concentric ellipsoids E_{\imath} and E_{o} of E with $E_{\imath} \subset K \subset E_{o}$ and quality $1+\sqrt{2}$.

THEOREM 2. Let K be a convex body in E^{2} such that, in the above remark, the center of E_{2} and E_{o} is the origin. Then, for each real $p \geq 2$,

$$
V(K) V\left(\Gamma_{p}^{*} K\right) \geq(\sqrt{2}-1)^{4} \omega_{2}^{2}
$$

Proof. By the definition of the p-centroid body,

$$
h\left(\Gamma_{p} K, x\right)=\left(\frac{\omega_{2}}{c_{0, p}}\right)^{\frac{1}{p}}\left(\frac{1}{V(K)}\right)^{\frac{1}{p}}\left(\int_{S^{1}}|x \cdot v| \rho(K, v)^{p+2} d v\right)^{\frac{1}{p}}
$$

Let E_{\imath} and E_{o} be the approximating ellipsoids of K with quality $1+\sqrt{2}$. Then $E_{0} \subset(1+\sqrt{2}) K$. Since $V\left(E_{0}\right) \leq(1+\sqrt{2})^{2} V(K)$,

$$
\begin{equation*}
\left(\frac{1}{V(K)}\right)^{\frac{1}{p}} \leq(1+\sqrt{2})^{\frac{2}{p}}\left(\frac{1}{V\left(E_{o}\right)}\right)^{\frac{1}{p}} \tag{7}
\end{equation*}
$$

Using $\rho(K, x) \leq \rho\left(E_{o}, x\right)$ and (7), then

$$
h\left(\Gamma_{p} K, x\right) \leq(1+\sqrt{2})^{\frac{2}{p}} h\left(\Gamma_{p} E_{o}, x\right)
$$

and so

$$
\Gamma_{p} K \subset(1+\sqrt{2})^{\frac{2}{p}} \Gamma_{p} E_{o}
$$

Using (2), we get

$$
\left(\frac{1}{1+\sqrt{2}}\right)^{\frac{2}{p}} \Gamma_{p}^{*} E_{o} \subset \Gamma_{p}^{*} K
$$

and using the relation that $V(\lambda K)=\lambda^{2} V(K)$, we get

$$
\begin{equation*}
\left(\frac{1}{1+\sqrt{2}}\right)^{\frac{4}{p}} V\left(\Gamma_{p}^{*} E_{o}\right) \leq V\left(\Gamma_{p}^{*} K\right) \tag{8}
\end{equation*}
$$

Using (8) and $V\left(E_{2}\right) \leq V(K) \leq V\left(E_{o}\right)$, we get

$$
\begin{equation*}
V(K) V\left(\Gamma_{p}^{*} K\right) \geq\left(\frac{1}{1+\sqrt{2}}\right)^{\frac{4}{p}} V\left(E_{i}\right) V\left(\Gamma_{p}^{*} E_{o}\right) \tag{9}
\end{equation*}
$$

From $E_{o}=(1+\sqrt{2}) E_{2}$, using (5) we get

$$
\Gamma_{p} E_{o}=(1+\sqrt{2}) \Gamma_{p} E_{2}
$$

and so

$$
\frac{1}{1+\sqrt{2}} \Gamma_{p}^{*} E_{\imath}=\Gamma_{p}^{*} E_{o}
$$

So

$$
\begin{equation*}
V\left(\Gamma_{p}^{*} E_{o}\right)=(\sqrt{2}-1)^{2} V\left(\Gamma_{p}^{*} E_{\imath}\right) \tag{10}
\end{equation*}
$$

By substituting (10) for (9), and by the case of the equality of (1), we get

$$
V(K) V\left(\Gamma_{p}^{*} K\right) \geq\left[(\sqrt{2}-1)^{\frac{2}{p}+1}\right]^{2} \omega_{2}^{2}
$$

Therefore, for $p \geq 2$, we obtain the desired result.
REMARK 2. Theorem 2 is the result of the special case $n=2$. Y. D. Chai and author(Y. S. Lee), in [1], obtain the general n and quality α for a convex body.

References

[1] Y. D. Chat and Young Soo Lee, Centrovd Bodies and Dual Muxed Volumes.
[2] M. Fujiwara, Uber die Mittelkurve zweier geschlossenen konvexen Kurven in Bezug auf eqnen Punkt, Tohoku Math. J. 10 (1916), 99-103.
[3] R. J. Gardner, Chord functions of convex bodies, J. London Math. Soc. (2) 36 (1987), 314-326.
[4] R. J. Garder, Geometrac Tomography, Encyclopedza of mathematics and its applucatzon, Vol. 58, Cambridge Univ. Press, Cambridge, 1995.
[5] P. J. Kelly, Curves wath a kind of constant width, Amer. Math. Monthly 64 (1957), 333-336.
[6] M. Lassak, Approximatzon of plane convex bodies by centrally symmetric bodies, J. London Math. Soc. (2) 40 (1989), 369-377.
[7] E. Lutwak and G. Zhang, Blaschke-Santaló anequaluty, J. Differential Geom. 47 (1997), 1-16.
[8] R. Schnelder, Convex Bodies: The Btunn-Minkowskı Theory, Cambridge Univ. Press, Cambridge, 1993.
[9] K. Yanagihara, On a characterastic property of the carcle and the sphere, Tohoku Math. J. 10 (1916), 142-143.

Department of Mathematics
Sungkyunkwan University
Suwon 440-746, Korea
E-mail: kmj@math.skku.ac.kr

