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PRIMARY DECOMPOSITIONS IN
NON-COMMUTATIVE LATTICES

JONG-MIN KM

1. Introduction

A partially ordered set P is said to be inductive if every totally
ordered subset has an upper bound. Then Zorn’s L.emma asserts that
every nonempty inductive set contains at least one maximal element.

A lattice is a partially ordered set L in which every subset with two
elements has both a greatest lower bound and a least upper bound in
L. The least upper bound (greatest lower bound) of the subset {a,b}
of L is called the join of a and b (meet of a and b} and is denoted by
aVb(aAb).

A multiplicative lattice is a lattice L on which a binary operation
(a,b) + ab from L x L into L, called multiplication, is defined for each
pair of elements in L, and satisfies the following conditions;

(1) ab<aAbforall a,bin L.
(2) a(bVc) =abVacand (bVc)a =baVca for all a,b,cin L.
It is easy to show that a multiplicative lattice L also satisfies;

(3) a(bAc) <abAacand (bAcla < baAca for all a,b,cin L.
(4) if a < bin L, then ac < bc and ca < ¢b for all ¢,b and cin L.

A multiplicative lattice I is associative if a{bc) = (ab)c for all ele-
ments a,b and ¢ in L, and commutative if ab = ba for all @ and b in

L.
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A lattice L satisfies the ascen(iing chain condition, abbreviated the
ACQC, if for every ascending sequence a; < a3 < a3 < ... of elements
of L there exists a positive integer n such that ax = e, for all k > n.
Then it is easy to show that the ACC, even in a partially ordered set, is
equivalent to the maximal condition : That is, every nonempty subset
S of L has a maximal element in S; more precisely, there exists an
element m in S such that if m < s for some s in S, then m = s. Note
that the maximal element need be unique.

An element a of a lattice L is meet-irreducible, if a = bA ¢ for b
and c in L implies that either b = @ or ¢ = @, that is, if a is not the
meet of two elements of L, each strictly greater than a.

The following result is easy to verify and its proof is an analogue of
that in non-commutative rings.

PROPERTY 1. If a latlice L satisfies the ACC, then every element
of L is a meet of a finite number of meet-irreducible elements of L.

A lattice L is semi-modular if, for all element a,b and ¢ in L the
relations b A ¢ < @ < ¢ < bV ¢ imply that there exists an element £ in
L satisfying bAc<ti<banda={aVi)Ac

A lattice L is modular if, for all elements a,b and cin L, e < ¢
implies that a V (bAc) = (aVb)Ac.

For every ring R, the lattice L{R) of all ideals of R partially ordered
by set inclusion is modular. More generally, a power set of any set with
set union and set intersection as binary operations and set inclusion
as a partial order forms a modular lattice. It is easy to show that
a modular lattice is also semi-modular (for a proof, see [4]), but the
converse is not true in general. |

In this chapter, all of the lattices under consideration are assumed
to be associative and semi-modular unless otherwise stated and they
also have a unique greatest element, denoted by e, and a least element,
denoted by 0. If a lattice L is multiplicative, then these elements also
satisfy ea = ee = a and 0a = a0 = 0 for all elements a in L.

An element g of a multiplicative lattice L is right-primary if, for all
aand bin L, ab < g and b £ ¢ imply that @™ < g for some positive
integer n . In the commutative case, there is no need to distinguish
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between right- and left-primary elements, and an element with the
given property will be called primary.

An element p in multiplicative lattice L is prime if, for all @ and b
in L, ab < p implies that either a < por b < p.

Let a be an arbitrary element of a multiplicative lattice L and con-
sider the following set N of elements of L

N={beL|b*<a forsome positive integer k}.

Then, since the element a itself is in N, N is nonempty subset of L.
Hence, if I satisfies the ACC, then N contains a maximal element.
Moreover, N is closed under the join operation. For, if & and ¢ are in
N so that b* < a and ¢™ < a for some positive integers k and m, then
in each term appearing in the expansion of (5 V ¢)**™ either b appears
at least k times or ¢ appears at least m {imes so that each term is either
less than or equal to ¥ or is less than or equal to ¢™. For instance, a
term like bchbe--- in which b and ¢ appear alternately has either b at
least k& times or c at least m times. So, in any case, it is less than or
equal to b* Ve™, which is less than or equal to a. Thus (bV c)**™ < a,
so bV ¢ is also contained in N and thus N has exactly one maximal
element, called the radical of @ and denoted by Rad(a). Since Rad(a}
itself is an element of the set IV, there exists a positive integer k such
that
(1) (Rad(a))* < a.

Other useful properties of radicals which can be found in Lesieur and
Croisot [4] are
(2) If @ < b, then Rad(a) < Rad(b).
(3) Rad(eias---ax) = Rad(a; Aag A--- A ag)
= Rad{ai) A Rad(a2) A -+ A Rad{ay).
Hence, in particular, Rad(a™) = Rad(a) for all positive integer n.
(4) Rad(Rad(a)) = Rad{a).
(5) If p is a prime element, then Rad(p) = p.
If a lattice L is commutative, then a routine application of definitions
will show that if ¢ is primary element, then Rad(q) is a prime element.
In this case, ¢ is said to be p-primary where p = Rad(q). Without
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commutativity, a similar result can be obtained for left- and right-
primary elements {See {4]).

Note that ¢ is a primary element if and only if ab < g and ¢ £ Rad(q)
imply that b < q.

Let e and b be two elements of a multiplicative lattice L. If there
exists an element ¢ in L satisfying ¢b < a and such that b < a for z
in L implies z < ¢, then ¢ is unique and is called the left-residual of e
by b and is denoted by a :; b. Similarly, an element d in L satisfying
bd < a and such that bx < a for x in L implies x < d is called the
right residual of a by b and is denoted by a :» b. Needless to say, in
commutative case, @ ;; b = a :,. b for all @ and b in L. A lattice L is
left-residuated (right-residuated) if @ :; b (a : b) exists in L for every
pair of elements ¢ and b in L, and is residuated if it is both left- and
right-residuated.

The following result is easy to verify.

THEOREM 1. If a multiplicative lattice L satisfies the ACC, then it
is resitduated.

PROOF. Let a and b be two arbitrary elements of L. Consider the
set N,

N={ceL|bc<a}

Then, N is clearly nonempty since @ is in N. Hence by the ACC,
N contains a maximal element c¢. If bz < a for some z in L, then
b(x V ¢) = bx V be is less than or equal to a so that z V ¢ is contained
in N and ¢ £ 2 V¢, and thus by the maximality of cin N, ¢ = z Ve,
proving x < c¢. Hence, ¢ = a :, b exists in L. A similar argument shows
that a :; b also exists in I and hence L is residuated.

The following properties of the residuals are easy to verify (for more

details, refer to [4]).

(1.1) d(a:r b) <aand a < (a: b) A(a: a).

(1.2) b<cimpliesthat a;,c<a:rband b:ra<c:a.

(1.3) (ax A~ Aap)i-c=(ay :;p ) A+ Afay :p €).

(14) a:r LV Vb)) =(a: b)) A Afay iy by).

(1.5) (e :pd) :(rc=a :, be.

(1.6) a: b=a: (a VD), and @ :, b = e implies that b < a.
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Similar properties hold for left-residuals.
Since ((a : b) ;1 ¢) < a : b implies that (b({a :» b) 1 ¢)c < a and thus
b{{a :» b) i ¢, it follows that {a :, b) ;1 ¢ < {a :y ¢) ;v b. Changing the
roles of the right- and left-residuals shows that

(L7) (e b)ye=(a:yc): b
Further, the following proposition holds.

(1.8) a:u{(bc)=(a:c)ub

In a multiplicative lattice satisfying the ACC, the radical of a pri-
mary element takes a special form.

PROPOSITION 1. Let g be a primary element, not equal fo e, in a
multiplicative lattice L satisfying the ACC, and let p = Rad(q). Then
there ezists an element ¢ in L such thatt £ q andp =q . L.

PROOF. Let g be a primary element, p = Rad(g) and consider the
set N of elements in L;

N={gut|t£q}.

Since e is in N, N is nonempty and contains a maximal element p* =
g 1 t for some fixed element ¢ not less than or equal to g. Since
p* = (¢ ut)t <qandt £ ¢ for g a primary element, it follows that
p* < Rad(g) = p. Next, assume that be < p* and ¢ £ p* for b and ¢
L. Then ¢t & g and so p* = ¢ ;; t < ¢ 3y ct. Thus, from the maximality
of p* in N, p* = q :; ¢t and since be < g 'y t = p* we obtain bct < gq.
So, it follows that b < ¢ :; ¢t = p*, proving that p” is a prime element.
Since p™ < ¢ for some positive integer n, ¢ < p* and p* is a prime
element, p < p*. Hence, p = p* = q ;; ¢ where ¢ ‘{_ q.

The following proposition gives relations between (right-) primary

elements and their residuals and radicals in a multiplicative lattices
satisfying the ACC.

PROPOSITION 2. Let g be an element in a mudtiplicative lattice L
satisfying the ACC. Then

(1) q is a primary element if and only of q ;3 v < Rad(q) for all
r in L such that v £ q. If q is p-primary, then q iy r is also
p-primary where p = Rad(q).
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(2) q i3 a primary element if and only if g = q . t for allt in L
such that t £ Rad(q).

PROOF. (1) If ¢ is a primary element and if r £ ¢, then (¢ y r)r < ¢
implies that g :; 7 < Rad(q). Clearly, Rad(q ;; ) = Rad(q). To show
that ¢ :; 7 is a p-primary element, assume that bce < gy randcL gy r
for b and ¢ in L. Then b(er) < ¢ and er £ ¢ imply that 4™ < ¢ for
some positive integer n and so b" < ¢ ;; 7, proving ¢ iz 7 is in fact a
p-primary element.

(2) If t £ Rad(q) for a primary element g, then #(q :, t) < g implies
that q :» ¢ < ¢ and so ¢ = ¢ :, . Conversely, if bc < ¢ and b £ Rad(q)
for band cin L, then ¢ < ¢ i b= ¢ : b = q, showing ¢ is primary.

There is an interesting relationship between the radical of an element
and an arbitrary element which is not less than or equal to the radical.
This relation can be applied to determine the structure of radicals.

PROPOSITION 3. Let L be a multiplicative lattice satisfying the ACC,
and o and b be two elements in L such that a # e and b £ Rad(a).
Then there exists a prime element p in L such that a < p, b & p and
a 1 % < p for all positive integers k.

PROOF. For a positive integer n, let b, = a ;; b*. Then a < b; <

- < b, £ ----is an ascending sequence of elements in L. By the
ACQC, there exists a positive integer k such that by = b, for all n > k.
Consider the set N of elements in L;

N={deL|by<d and b Rad(d)}.

Then by is in N. For, if not, then b < Rad(bg), so b < by = a 33 b* for
some positive integer n and thus d"t% = p7b* < (a 3 b*)b* < a, which
means that b < Rad(a), contradicting the assumption on b. Thus N
is nonempty and again by the ACC, there exists a maximal element p
in L. Then b* = a ;; ¥ < p and b £ p. To show that p is a prime
element, assume that rs < p, but 7 £ pand s £ p for some r and sin L.
Then, p <rVpand p < sVp, ie., pis strictly less than both rVp and
sVp. So from the maximality of p in N, we get that b < Rad(rVp) and
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b < Rad(sVp). Thus ™ < rVpand b™ < sVp for some positive integers
n and m so that b"t™ = p"b™ < (rVp)(sVp) =rsVrpVpsVp? <p
and thus b < Rad(p), contradicting the fact that p is in N. Hence p is
a desired prime element, and this completes the proof.

A prime element p is a minimal prime of a if p > a and for every
prime element p’, p > p’ > a implies that p =p’.

In commutative rings, if a prime ideal P contains an ideal A, then
P contains a minimal prime ideal of A [6]. A similar result holds in
multiplicative lattices satisfying the ACC.

To show this, note first that in such lattices, the assumption of the
ACC can be used to show the existence of a greatest lower bound for
every nounempty subset in the following way :

Let L be a lattice with a least element 0 satisfying the ACC, and §
be an arbitrary nonempty subset of L. Since the element O itself is a
lower bound for S, it follows that the set N of all lower bounds for S
is nonempty. Hence, by the ACC, N contains a maximal element m.
Note that N is closed under the join operation. For, if my and my are
in N, then m; Vmy < sVs=sforall sin S so that m; Vmes is also a
lower bound for S. This implies that N has a unique maximal element
m, which is obviously a greatest lower bound for S, and denoted by
Asess. In this way, a meet for the elements in an arbitrary subset of
L can be defincd by taking its greatest lower bound.

In particular, if a subset S consists of countably infinite number of
elements s,, then its greatest lower bound is denoted by A, 5.

Consider a chain of prime elements p; > p2 > -<- 2 pp, > -+~ In
a multiplicative lattice L satisfying the ACC. Then, by the argument
above, its greatest lower bound A,p, exists in L. Let p = App,. To
show that p is also a prime element, assume that be < p for b and ¢n
L and b £ p. Then b £ p, for some positive integer n and thus b £ pi
for all k > n since the given chain is descending. Therefore, for all &
such that £ > n, bc < pi. and b f_ pr imply that ¢ < pg. It is clear
that, for m < n, p, > pn and ¢ < p,, imply that ¢ < p,,. Hence ¢ < p;
for all positive integers k and so ¢ < p, proving p is indeed a prime
element in L. Now let a be an arbitrary element in L such that a # e.
Then, clearly Rad(a) # e, and thus from Proposition 3, there exists a
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prime element p in L such that ¢ < p and p # ¢. As mentioned earlier,
there is a minimal prime element p* of a such that p* < p.

To show this, consider the set P of all prime elements ¢ in L such that
o <tand i< p Then pisin P and therefore P is nonempty. Define
a new relation “ <’ ” in P as follows : for p; and p2 in P, p1 <’ po
if and only if p» < p; in L. Then, since < is a partial order on L, it
follows that <’ is also a partial order on P. Moreover, P is inductive.
To see this , let ) be an arbitrary totally ordered subset of P. Then
g = Nt exists in L and it is also a prime element such that a < ¢
and g < p. Therefore ¢ is contained in P. Note also that a < ¢t in L
implies that ¢t <’ ¢ in P for all £ in @, showing ¢ is an upper bound for
). Thus P is inductive and so P contains a maximal element p* with
respect to the relation <’ by the Zorn'’s lemma. Then p* is a prime
element such that ¢ < p* < p. Suppose that p; is a prime element
satisfying ¢ < p; < p*. Then p; is in P and p* <’ p;. Then, from
the the maximality of p* in P, p* = p;. This show that p* is in fact a
minimal prime element of a. Consequently, the following proposition
has been proved.

PROPOSITION 4. Every element in a multiplicative lattiwce satisfying
the ACC has at least one minimal prime element.

- COROLLARY 1. Let a # e be an arbitrary element in a multiplicative
lattice L satisfying the ACC. Then Rad(a) is the meet of all minimal
prime elements of L.

PROOF. Let r = A{p € L | p is a minimal prime element of a}. If
p is a minimal prime element of e, then @ < p and hence Rad(a) <
Rad(p) = p, Rad(a) < r. If Rad(e) # 7, then there exists a prime
element p; in L such that ¢ < p; by Proposition 3. Thus there exists
a minimal prime element p of a such that p < p; and r £ p, which
contradicts the fact that r is a meet of all minimal prime elements of
a. Hence Rad(a) =r.

As a matter of fact, the presence of the ACC in lattices provides
more information about the structure of radicals in terms of the number
of minimal prime elements.
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PROPOSITION 5. Let a be an arbitrary element in a multiplicative

lattice L satisfying the ACC. Then a has only a finite number of mun-
imal prime elements.

PROOF. If @ is a prime element, then a is the only minimal prime
element of a, so there is nothing to prove. Therefore, assume that
a is not a prime element and suppose that @ has an infinite number
of minimal prime elements p,. Since @ is not a prime element, there
exists eléments b and ¢ in L such that bc < @, b £ ¢ and ¢ £ a. Then
both a V b and a V ¢ are strictly greater than @, and {(a Vb){(a V ¢) =
(@vblaV(evb)c=a?VbaVacVbc< aVbc=a < p, for all i. Hence
each p, is greater than or equal to a Vb or to aVec. Note that either an
infinite number of prime elements p, must be greater than or equal to
a V b. Assume that this is true for a V b and let b = a V b. Note that
each minimal prime element p, of ¢ is also a mimmal prime element of
b;. Hence by also has an infinite number of minimal prime elements,
and b; cannot be a prime element. Therefore, if a has an infinite
number of minimal prime elements, then there exists an element with
the same property, which is strictly greater then e and continuation of

this argument leads to a contradiction of the ACC in L. This completes
the proof for Proposition 5.

Note that the unique representation of a radical of an element a as a
meet of a finite number of its minimal prime elements does not depend
on any decomposition of a into meet-irreducible elements in a lattice.

A primary element ¢ is a minimal primary of ¢ if @ < ¢ and for every
primary element ¢, a < ¢’ < ¢ implies that ¢ = ¢'.

The following result proves the existence of a minimal primary ele-
ment of an element whose radical is a prime element.

PROPOSITION 6. Let a be an element in a multiplicative lattice L
satisfying the ACC such that a # e. Let p = Rad(a). If p 1s a prime
element in L, then there exists a unique p-primary element q of a such

thata g &£ p
PROOF. Consider the following set NV of elements of L;

N={teLla<t and a:t¥£p}.
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Since a # e implies that p # ¢ and e = a :;; a £ p, it follows that @ is
in N and therefore N is nonempty. Hence, by the ACC, N contains a
maximal element g. Then ¢ > a and @ 1 ¢ £ p. Note that (a :; ¢)g <
a < panda:y g £pimply that a < g < p so that Rad(q) = p. To
show that ¢ is a primary element, assume that bc < g and ¢ £ ¢ for b
and ¢ in L. Then since q is strictly less than ¢ V ¢ and ¢ is maximal
element in N, it follows from the properties (1.2) and (1.8) that

(a) ax(gvo) <p,

by aug<(az{gVve)ub.

Suppose that b £ p = Red(q), i.e., b £ ¢ for all positive integers
n. Then p 1 b = p and from (a), (e 4 (gVe) udb<p:ub=np
However, a ;; ¢ £ p and thus (@ ;; (V<)) ub £ pby (b ), whichis a
contradiction. Hence b < p = Rad(q}, showing ¢ is indeed a p-primary
element. If there is a p-primary element ¢ such that ¢ < ¢ < g, then
(@4 q)g <a<tanda:y g £ p = Rad(g) imply that ¢ < ¢ and
thus ¢ = ¢, which shows that ¢ is a minimal primary element of a.
The uniqueness follows form the fact that ¢; A g2 is again a p-primary
element if ¢; and go are both p-primary elements. This completes the
proof for Proposition 6.

REMARK.

(a) Taking right residuals in Proposition 6 shows that the same ¢
also satisfies a :r g £ p.

(b) In commutative rings, an ideal whose radical is a prime ideal
is called primary. ’

2. Conditions for a primary decomposition

A lattice L is said to satisfy the primary decomposition property if
every element a of L can be expressed as a meet of a finite number
of primary elements g, of L. Such an expression is called a primary
decomposition of a.

A primary decomposition & = g; A- - -Agx is a normal decomposition
of a if:

(1) No g, is greater than or equal to the meet of the remaining g,
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(2) Rad(q.) # Rad(g,) if 2 # j.

It is well known that every primary decomposition can be reduced
to a normal decomposition.

In general there can be more than one normal decomposition of an
element a. However, the following are well-known(see {4}):

(1) The number of primary components in any two normal decom-
positions of a is the same,

(2) The set of radicals of the primary components occurring in any
normal decomposition of @ is unique.

The prime radical of a primary component which appears in any
normal decomposition of a is called an associated prime element of a
or a prime element belonging to a.

The following proposition gives a necessary and sufficient condition
for a prime element to be an associated prime element for some element.

PROPOSITION 7. Let a = q1 A+ -+ Agm be a normal decomposition of
an element a, not equal to e, 1 a multiplicatwve lattice L satisfying the
ACC. Let p be a prime element in L. Then p is an associated prime
element of a if and only if there exist an element t in L and an integer
tsuch thatt < q,p=a:ut andt < q, for alli # j.

PROOF. Assume that p is an associated prime element of a, say
p = p; where p = Rad(q;). If m = 1, then @ = ¢, is a primary
element and p = @ 3 t for some element ¢ in L such that ¢ $ a by
Proposition 1. Hence, assume that m > 1. Since a = q1 A - A gnm
is a normal decomposition, there exists an element b in L such that
b ;{ g1 and b is less than or equal to the meet of the remaining q,, i.e.,
b< gA---Agm- Thena:3 b=¢q :; band g :; bis ap;-primary element
by Proposotion2, so p’f" < ¢ 4 b for some positive integer kq. Clearly
q) 21 b is less than or equal to (q 3 d) = p1. 1 g1 u b= (g 1 b) :r p1,
then gy b= (g1 u b) ir p1 = ((p1 =r 1) 2 Pr = (@1 2 B) i T Dy
(1.5) and thus ¢; ; b is equal to (g, i1 b) i p¥ for all positive integer
k. Then, in particular, g¢; ;1 b = (g, 22 b) :» p‘f" = e since p’f" <gpub
and thus b = eb = (g, ;1 b)b < q1, contradicting the choice of b. Hence
¢1 a1 b is strictly less than (g1 :; b) :r p1, S0 there exists an element ¢ in
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L such that
c<(gqrub):rpr and cLq b

Then p;(cb) < gy, but cb £ ¢; so that ¢ ;3 ¢b < py by Proposition 2.
But p;{(chb) < ¢; also implies that p; < ¢, ; ¢b. Thus p; = ¢ y cb =
{(gradyuc={aubd)yec=ua:y chby (1.8). Hence p1 = a :; cb and
cb £ q1 but cb < g, if i > 1.

Conversely, let p = @ ; t for some ¢ in L such that £ £ q,, ¢t < ¢, if
j#i Thenp= (g1 4 t)A--A(gm 1) = ¢, 1 t is & p,-primary element
and so p = Rad(p) = Rad(g, i1 t) = p,. Therefore, p is an associated
prime element of @. This completes the proof for Proposition 7.

COROLLARY 2. Let a and L be as in Proposotion7. Then Rad(a) =
a : t for some element t in L such that t £ q, for all .

PRrRooOF. Yor each i, p, = Rad(q,) = a :; £, for some element ¢; in L
such that t, £ ¢,. Hence, Rad(a) = Rad(q A --- A gm) = Rad(q) A
-+ARad(gm) ={(ay t1)A---Nay ty) =a:t, wheret =t,V---Vigy.
Thus t £ ¢g,, because t; £ ¢, and £, < ¢ for all 4.

Before presenting conditions under which the primary decomposi-
tion property holds in lattices, it is useful to provide an example to
demonstrate that the ACC assumption even on a commutative lat-
tice is not sufficient for the existence of primary decomposition of all
elements.

It is easy to construct a lattice L which is multiplicative, associative
and commutative satisfying the ACC. However, note that the meet-
irreducible element 0 is not a primary element, since ab < 0, b ;(_ 0,
but a” = a £ 0 for all positive integer n. Thus, unlike the situation
for commntative rings, a condition besides the ACC is necessary to
guarantee the existence of primary decompositions. The following are
three major conditions which appear on the literature to guarantee the
existence of primary decompositions under some assumptions.

(1) Ward and Dilworth [7].

(WD) : Given two elements a and b in a lattice, there exists a
positive integer n such that

a® A b < ab.
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(2) Barnes and Cunnea [1],[5].

(BC’) : Given two elements a and b in a lattice, there exists a
positive integer n such that

8" Afa: b") < a.

(3) Barnes and Cunnea [1},[5].

(BC) : Given two elements a and b in a lattice, there exists a
positive integer n such that

{(aVbd*)A(a:rb") =a.

For convenience, the statement that every element of a lattice has a
primary decomposition will be denoted by N. Ward and Dilworth have
proved that the condition (WD) is equivalent to the condition (N) in a
commutative, associative and modular lattice satisfying the ACC, and
Lesieur has proved the same result for an associative and semi-modular
lattice [3], and Kurata {2] and McCarthy [5] for a non-associative lat-
tice. The condition (BC') and (BC) were discovered by Barnes and
Cunnea [1] in a commutative Noetherian ring, and the equivalence of
(N} to the condition (BC'), in a residuated lattice satisfying the ACC,
and (N} to the Condition (BC) in a modular and residuated lattice
with the ACC, have been proved by McCarthy {5].

The main result in the this paper is to present another conditions, in
addition to those listed before, on a {non-commutative) semi-modular
lattice satisfying the ACC under which every element has a primary de-
composition. Those conditions are appled to a direct construction of a
normal decomposition without use of a meet-irreducible decomposition
(See Property 1) .

To avoid repetitions, the following condition is denoted (*):

(*) If @ and b are two arbitrary elements in a lattice, then there
exists a positive integer n such that

ba(e: b)" <a.

To show that the condition ( N ) is equivalent to the condition (*),
the following impotent result due to Lesieur [3] is needed.
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LEAIEURE’S LEMMA. Let a be a meet-irreducible element of a semi-

modular lattice L. If aAb = cAb for b and ¢ in L with a < ¢, then
b<a.

PROOF. First, observer that cAb<a<c¢<cVb lfcAb=a, and
thus @ < b. ThenaVb=bandcA(aVvd)=cAb=aAb=a, but
a < c¢. Hence, from the meet-irreducibility of a, @ V b is equal to a so
that b < a. Next,ifc=cVb, thenb < candso a Ab =cAb=>b, hence
b < a. Finally, assume that cAb < a and ¢ < ¢vb. Then, from the semi-
modularity of L, there exists an element ¢ in L such that cAb <t < b
and a = (a V¢) Ac. But, then, since @ is meet-irreducible and @ < ¢, it
follows that aVi=a,s0t < aand thust <aAb < cAb <, whichis
a contradiction. This completes the proof of the lemma.

The following theorem is one of the main result of this paper.

THEOREM 2. Let L be a semi-modular, multiplicative lattice satis-
fying the ACC. Then the conditions (N) and (*) are equivalent.

PROOF. First assume that the condition (N) holds in L and let a
and b be two arbitrary elements in L. Let a = ¢1 A- - - Agg be a primary
decomposition of @ where each ¢, is a primary element. Assume that
the g,’s are arranged so that b < g1, ,b< g, for m <k,and b £ ¢,
ifi >m. Thenayb=1{(q 4 b) A Algm 1 B)A(gmt1 uB)A---A{gk u
b) = (gm+1 u d) A--- A{gr 1 b), and each ¢, ;1 b < Rad(g,) for
¢t > m by Proposition 2. So there exists a positive integer n such
that (g, :; b)™ is less than or equal to ¢, for all ¢ > m. Then, clearly
(a:d)" < gmy1 A+ Age , and thus

bA(@a b " <@ A AGmAGumii N Agr = a,

which proves that the condition (*) holds. Thus (N) implies the condi-
tion(*). To show the condition (*) implies the condition (N}, it suffices
by property (1.1), to prove that if a is a meet-irreducible element of L,
then ¢ is a primary element. Assume that a is meet-irreducible, be < a

and ¢ £ a for b and ¢ in L. By the condition (*), there is a positive
integer n such that

(aveyAa(aa(aVe)” <a.
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Then be < @ implies that b<a:yc=a: (aVe),sod™ < (ay (aVe)™
and thus (aVe)Ab™ < a, (aVe)Ab™ £ aAb™. However, aAb™ < (aVc)Ab™
for all positive integers n so that

(aVe) AD" =aAbd".

But aVe > a,ie., aVcisstrictly greater than a. Then, by the Lesieur’s
Lemma, ™ < @, proving a is a primary element. Hence, the condition

(*) implies the (N) in L.

Note that, in the proof of Theorem 2, the positive integer n was
chosen so that (a :; b)™ < ¢ny1 A--- A gy . Therefore, aV (a 3y b)) <
aV {(qms+1 A Agk) = @ms1 A--- A gg since each ¢, > @ . Also note
that b < qu A---Agp, impliessaVb < aV{(i A Agm) =q1 A Am.
Hence, it follows that (e Vb) A {(a V (a ;; b)™) is less than or equal to
QA Agm A -Age =a and so (aVb)AlaV(a :; b)*) = a. Conversely,
ifa = (aVb)A(av{a: b)™) < a, which is the condition (*) and thus the
condition{N) holds in L. Hence, the following result has been proved.

COROLLARY 3. Let L be a semi-modular, multiplicative lattice sat-
fying the ACC. Then the following conditions are equivalent:

(1) L satusfies the condition (N);

(2) L satisfies the following condition :

(**) Given two elements a and b in L, there exists a positive integer
n such that

a=(aVvdA(aV(e:d)").

It is well known that if R is a commutative Noetherian ring, then
the lattice L(R) of all ideals of R is modular (and hence semi-modular

) and satisfies the condition (N) and thus the condition (*) by {6] and
Theorem 2. Hence,

COROLLARY 4. Let R be a commutative Noetherian ring and let A
and B be ideals of R. Then, there erists a positive integer n such that
(A+B)N(A+(4: B)®*)=A.

Without using the primary decomposition in Noetherian rings, the
following Krull Intersection Theorem can be obtain {see [1]).
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COROLLARY 5. Let R be a commutative Noetherian ring and M be
an wdeal of R. Set A=N,M"™. Then A= AM.

PROOF. By Corollary 4, there exists a positive integer n such that
AN(AM : A)" is contained in AM. Clearly, M is contained in AM : A,
so A= ANM?" is contained in AN (AM : A)”, which show that A is
contained in AM. The reverse inclusion is obvious.

A similar result holds in a lattice satisfying the condition (*}.

COROLLARY 6. Let L be a residuated lattice satisfying the condition
(¥), and let a be an arbitrary element of L. If Ap,a™ exists in L, and
x € L is less than or equal to Ay a®, then x = az.

PROOF. By (*), there exists a positive integer n such that
zA(az q z)" < az.

Note that ax < axr implies that a < ez zs0z <z Aa™ <zA{azx i
z)* < ax. But ez < z is always true and so x = az.

COROLLARY 7. Let L be a multiplicative lattice satisfying the ACC

and the condition (*). If a and = are elements of L such thatz < Apa™,
then z = azx.

ProOOF. The conclusion follows from the fact that A,a™ exists in L
for every element a and from Corollary 6.

COROLLARY 8. Let L be a semi-modular, multiplicative lattice satis-
fying the ACC and the condition (N). If c = N (aVb¥), thenc = aVbe.

PROOF. Note that a V be < ¢ is always true since @ < c and be < c.
Since the condition (N) holds in L, it follows that the condition (**)
holds in L by Corollary 3. Hence, there exists a positive integer n such
that

aVbc={{aVbe)Vc]AllaVbe)V((aVbe) ).

Since be < aVbe, b < (aV be) ; ¢, we have b < ((a V be) 4 ¢)* and
hence aVbe > cA[(aVbc) Vb®| =cA{(aVbd™)Vbd > cA{cVibe) =c.
Therefore, a V be > ¢ and thus ¢ =a V be.
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The following result gives a direct relationship between the condition

(WD) and condition (*) in all (left-) residuated lattices (not necessarily
satisfying the ACC ).

THEOREM 3. Let L be a (left-) residuated lattice. Then the condi-
trons (WD) and (¥} are equivalent.

PROOF. Assume that the condition (WD) holds in L and let @ and
b be two arbitrary elements in L. Then there exists a positive integer
n such that (@ 1 b)) Ab < (a i b)b. But (a i b)b < a and so (a y
b)™ Ab < e, and the condition (*) holds. Thus the condition (WD)
implies the condition (*) in L. Conversely, assume that the condition
(*) is true in L and choose a positive integer n so that, for e and & in
L, bA (ab:y b)® < ab. Then ab < ab implies that a < ab y b, hence
a™ is less than or equal to (ab ; b)” and thus ™ Ab < ab, which is the
condition (WD). This completes the proof for Theorem 3.

In Theorem 1, it has been proved that the assumption of the ACC
implies that every multiplicative lattice is residuated. The following

theorem asserts that the conditions (BC’) and (*) are equivalent in
such lattices.

THEOREM 4. Let L be a multiplicative lattice satisfying the ACC.
Then, the conditions (BC’) and (¥) are equivalent.

PRrROOF. Assume that the condition (BC’) holds in L and let a and
b be arbitrary element in L. Then there exists a positive integer n such
that

(aub)" ANaw (e )" <a.

Observe that {2 :; b)b < a implies that b < a - (a1 b) <a:r {a: b)™
Thus, b A {a ; b)™ < @, which is the condition (*). Conversely, assume
that the condition (*} holds in L: if e and b are arbitrary elements
in L, then b A {(a ;; b)® < a for some positive integer n. First, by the
ACC, we can choose a positive integer k so that a :, bk = a ., b for all

positive ntegers ¢ such that ¢t > k. Next, by the condition (*), choose
a positive integer m such that

(a7 b5) Afa (o b)) < a.
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Now b*{(a :» ¥*) < @ implies that b* < a y (e : b*). Set n = km.
Then @ 3 ¥ = a :, b™ and b* = (B*)™ < [(a i (a :» b*)|™ so that
" A {a: b7) < [ay (@i %)™ A (@ i b%) < a, which is the condition
(BC’). Thus the condition (*) implies the cordition (BC’) in L. This
completes the proof for Theorem 4.

It is well known that the condition (BC) is equivalent to the con-
ditions (N} and (WD) in a modular lattice satisfying the ACC [5].
However, it has not been known whether or not the condition (N) im-
plies the condition {BC} even in semi-modular lattices. The following
theorem and its corollary settle this matter.

THEOREM 5. Let L be a multiplicative lattice satisfying the ACC.
Then, the conditions (BC) and (**) are equivalent.

PROOF. Assume that the condition (BC) holds in L and let @ and
b be two arbitrary elements in L. Then, there exists a positive integer
n such that

a=[aV(eyg )" Ala:r (@ d)"].

Since (a ;3 b)b < e,b < a: (a4 b) we have b < a :» (a 1y b)™ so that
[@aV (a:yb)® A (aVvb) < a. Since the reverse inequality is always true,
it follows that @ = [a V (a ;; )™] A (a V b), which is the condition (**).
Thus the condition (BC) implies the condition (**) in L . Conversely,
assume that the condition (**) holds in L and let @ and b be arbitrary
elements in L. By the ACC, there exists a positive integer k such that
a :r b = a:,. b™ for all positive integer n such that 7 > k. Next, using
the condition (**), choose a positive integer m so that

a=[aVia: ) AleV(azy (a: F))™].

Then b*(a :,. b*) < @ implies that b* < a ; {a :; b*) and thus b =
(%)Y < la:y (a7 )™ . Let n = km. Then e i b™ = a :, b* and
thus (a: B?) A {aVd?) < (a: ¥¥)AfaV (a:y (e %)) < a. But
(@ & D*) A (a V") > ais always true, so a = (a :» b%) A (@ V b%),
which is the condition (BC). Thus the condition (**) implies that the
condition {BC) in L. This completes the proof for Theorem 5.
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COROLLARY 9. Let L be a semi-modular, multiplicative lattice sat-
isfying the ACC. Then the conditions (N), (WD), (BC'), (*) and (**)
are all eguwalent in L.

PROOF. Note that the following equivalences already have been
proved : (WD) if and only if (*) in Theorem 3, and (N} if and only if
(*) in Theorem 2, and (N) if and only if (**) in corollary 3, and (*) if
and only if (BC') in Theorem 4, and finally (**) if and only if (BC) in
Theorem 5. Hence, all the conditions are equivalent in L.

3. Construction of a primary decomposition

In this chapter, let L be a (not necessarily commutative) multi-
plicative, associative and modular lattice satisfying the ACC and the
condition (*).

It has been proved that L under these assumptions satisfies the
condition (N). In the proof of this, the fact that every element of L can
be expressed as a meet of a finite number of meet-irreducible elements
of L was used. In this chapter, a direct construction of a primary
decomposition will be given without use of the irreducibility of elements
in L. For this purpose, a condition under which a prime element is

a minimal prime element of some element is given in the following
proposition.

PROPOSITION 8. Let a be an arbitrary element of L such that ¢ # e,
and let p be a prime element of L. Then p is a mimnimal prime element
of a if and only if there exists an element q in L such that a < q,

Rad(q) =p anda 1 g £ p.

PROOF. Assume that there exists an element g in L satisfying a¢ < g,
Rad(g) = p and a ;3 ¢ € p. Let n be a positive integer such that
p"* < g. If a itself is a prime element and a # p, then a :; p™ = a, since
(@: p*)p” < aand p" £ a. But thena;; ¢ < ayp® =a < p, which
is a contradiction. Hence, assume that a is not a prime element, and
suppose that there exists a prime element p* such that a < p* < p,
that is ¢ # p* and p* # p. Then ¢ y p™* < p* 4 p* = p* < p, but
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ayqépandagqg<aypt £ p, whick is a contradiction. Hence, p
is a minimal prime element of a.

Conversely, assume that p is a minimal prime element of a. Note
that p # e. For, if not, then Rad{a) = p = e implies that a = €, which
is not the case. Consider the following set N of elements in L;

N={tecL|e<tanda:;tZp}

Since ¢ < a and e ;; @ = e £ p, it follows that e is contained
in N, so NV is nonempty and it contains a maximal element p by the
ACC. Then a < gand @ ;; ¢ £ p. Note that since (¢ ; ¢)g < a < p
and a ;; ¢ £ p for p a prime element, it follows that ¢ < p so that
Rad(q) < Rad(p) = p. Also note that if bc < ¢ and ¢ £ ¢ for b and
¢ in L, then b < p. Now ¢ £ g implies that q V ¢ is strictly greater
than ¢ and thus @ ; (¢ V ¢) < p by the maximality of g in N. Since
blgve)=bgVbec<bgVg=g,ayqg<aublgvVe)={(ay(gve)) b
by Property (1.8) and thus (a : (¢ V ¢)) 3 b £ p. Therefore, if b £ p,
then p ;; & = p, which is a contradiction. Thus < p. Now, assume
that Red(q) # p. Since Rad{q) < p and p is also a minimal prime
element of ¢, it follows that Rad(q) < p At where ¢ is a meet of the
remaining minimal prime element(s) of ¢q. Let &k be the smallest positive
integer such that (Red(g))* < ¢, ie., (Rad(g))* £ qifn<k. If k=1
;then Rad(q) = ¢ so that tp < tAp =g andt £ p imply that p < ¢,
and thus p = q. Soa ;; p = a 4y ¢ £ p. Assume that & > 1. Then
tp(Rad(q))*~! < (t A p)(Rad(g))*' = Rad(¢))* < q and t £ p imply
that p(Rad(q))*~! < ¢. By (*) and (WD) from Theorem 3, there exists
a positive integer n; such that p™ V(Rad(g))* ! < p(Rad(q))*~'. Then
(Rad(g))*~'p™ < g and thus (¢,)(Rad(q))*2p™ < (Rad(g))*~1p™ <
q and t £ p imply that p(Rad(q))* 2p™* < ¢. Again by the condition
(*), there exists a positive integer ny such that

p™ A (Red(q))*? < p(Rad(g))*2,

and hence

(Rad())*~?p"2p™ < [p™ A (Rad(g))*2|p™ < p(Rad(g))*"2p™ < q.
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Continuing this way, there exist positive integers ny,n2, -~ ,nk—1 such
that

(Rad(g))*~(E=Hpmsr - piop™ < g.

Then form

tp(p™=t -+ p™p™t) < (Rad(g))(p™ " ---p™p™) < ¢

and t £ p, we get p™tm2t +ne1tl < g which means that p < Rad(q).
Since Rad(q) < p is true, it follows that Rad(q) = p, which contradicts
the assumption Rad(q) # p. Therefore, ¢ is an element in I such that

a < ¢, Rad(q) = p and a ;3 ¢ £ p. This completes the proof for
Proposition 8.

LEMMA 1. Let L be a residuated lattice. Then

(1) For all elementsa, b andcwm L, (a 4 b){b:yc) <a qc
(2) If p is a prume element in L, a :; (bAc) £ p andcy d £ p,
then a ;y (bAd) £ p.

PROOF. (1) Note that (a :; b)(b:; ¢)c < (a3 b)b < a implies that
(aubd)buc)<auc

by the definition of hft-residuals.
(2} Observe that

(@ (A cad)bAd) <(ay (bAc)(cu d)bA(cyd)d
<{ay(Ar)bArc)<a

implies (a ;; (bAS)) ey d) < a:y (bAd). Now the conclusion follows
from the definition of a prime element.

COROLLARY 10. If p s a minimal prime element of an element
a # e, then there erists a p-prumary element ¢ in L such that a < ¢
anda: q¥£p.
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Proor. By Proposition 8, there exists an element ¢’ in L such that
a < ¢, Rad(¢’) =p and a :; ¢ £ p. Then by Proposition 6 in Chapter
1, there exists a p-primary element g of ¢’ such that ¢’ :; ¢ 1{_ p. Since
(e:1¢)q 1 q) <a:y qby Lemma 1.(1),it follows that a ;; ¢ £ p. Now
a < ¢q follows from the facts that ¢ < ¢’ and ¢ < q.

Now, assume that, in addition to the ACC and the condition (¥*),
L satisfies the modularity condition. Let @ be an arbitrary element of
L, not equal to e. To show that ¢ has a primary decomposition in L,
first let p11,...,P1x, be the collection of all minimal prime elements of
a. Recall that by Proposition 5,the number of such prime elements is
finite. For each %, there exists a p;, -primary element ¢;, such that a
< ¢1. and @ i g1, % P1, by Corollary 10. Set g1 = g11 A -+ A gk, - If
a 3 @1 = e, then ¢ € a by Proposition 6 and thus ¢ = g1 = g11A - -Ag1x,
is a normal decomposition of a. If a :; g1 # e, then using the condition
(*) choose a positive integer n such that

(1) aAleaq)" <a.

Let pjy,--- ,p2x, be the set of all minimal prime elements of a :; ¢;.
Observe that po, £ pi, for all ¢ and j since a ;; g1, £ p1,,and @ 3y ¢y, <
a 13 q1 < pa,. Note that each py, is also a minimal prime element of
(a : q1)™. For, if there exists a prime element p such that (a :; i)™ <
P < pa, then a ;; g1 < p. Since ps, is a minimal prime element of
@ ¢1, P = P2, and hence pg, is in fact a minimal prime element of
(a :; q1)". Therefore, by Corollary 10 , for each ¢ = 1,--- ko, there
exists a pg,-primary element sy, in L such that (@ 4 ¢1)® < 32, and
(@ 1 @)™ 21 s2, £ p2.. Since pg, £ py, for alli and j and Rad(s2,) = pa,
it follows that, so, € ¢; = q11 A -+ A g1, for all 3.

Note that, @ 5 (g A s2,) £ pa, for all 4, since

(a1 1) i1 82 <(auqu)" (g A s2,)
=eAf(e:rq1)" 1 (g1 A s2.)]
=[q1 2 (g1 As2)] Al @)™ o (@1 A sl
={q1 A (e q1)") 1 (g1 A 52,)
<a i (g1 A sy,)
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implies that (a7 ¢1)™ :1 s, < @ (g1 A sp.) and (a 2 q1)™ u 52, £ P2
by the choice of s;,. Note also that,for all 2 =1, ..., ks,

(2) a (QI A (a v 322)} é P2:-

By the modularity of L, @ < ¢; implies that (g A{aVss,)) = aV{(g1As2,),
soay (1 V{aAsn)) =a: (aV(giAs2,)) =a: (giAsn) £ pa, which
proves the inequality (2). Since 89, < aV sy, < py,, it follows that pg, =
Rad(sy,) < Rad(aV s3,) < Rad(pa,) = pa, and thus Red{aV s3,) = py,.
So, again by Corollary 10, for each ¢ = 1, --- , ks, there exists a p,
-primary element ¢s, such that

(3) aV sy, < g, and (aV 82,) ;g f_ P2

Note that each ps, is a prime element. The inequalities (2) and (3)
imply that @ :; (g1 A g2,) £ po, by Lemma 1.(2). Thus ¢; Agay A--- A
Qoks = Q11N Ak, A - -Agag, is a meet of primary elements satisfying

a: (g1 Agor Ao A gary) f_ Rad(a 3 q1) = po1 A+ A Papy,

because of the facts that a ; (g1 A g2,) € g2 and @ 5 (1 A ga,) < ay
(1AguA-Agar,). ez (1 Ag1 A Agay,) =€, then a = g1 Aga A
o AQoky = Qi N Aqig, A Agog, 1S a primary decomposition for a.
ey (qAgaA - -Agak,) # €, thenr q) Agoy A- - - Aqo, is strictly greater
than a. Then the same argument as before can be applied to obtain
P3,-primary elements g3, such that @ ;3 (g1 Aga1 A~ A Gak, AG3:) £ Paa,
where p3, is a minimal prime element of a :; (g1 A g21 A -+ A gog,)-

Continuing this argument, a descending sequence of elements in L can
be constructed in the following way :

a1 =q =q1 N ANqig,,

and more generally, @n+1 = @n A Gny1, Where ¢,y is the meet of all of
the primary elements of @ :; a, as found above, if @ :; @, # e. Then,
since the sequence {a,} is descending, it follows that the elements
a :; a, form an ascending sequence and hence, by the ACC in L, there
exists a positive integer n such that @ :; a, = a 3 ax for all positive
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integer k£ > n. If a :; an # e, then @ :; a, has a minimal prime element
p, but @ ;; a1 £ p by the construction of the element any,. Thus
a: an =€, which meansa = a, = qA---Agp, where ¢, = ga A+ -Aqu,
is a primary decomposition for a.

It remains to show that a = gy A -+ A gy, where g, = g1 A~ -+ A Qu,
is a meet of p,,-primary elements gq,,, p,, is a minimal prime element
of @ ;; (g1 A+ - Agu—1), is a normal decomposition for a. Recall that the
elements a,, ¢, and p,, satisfy the following properties :

(4) ay(a-1Ag,)Lp, forall j=1,---k, and i>2,

where p,; is a minimal prime element of @ 3 a,—1 = @ 3 (g1 A -+ A
G—1,1 A A g1k, _,). First, note that p,; # pg for all 5 and ¢ if
¢ # s. For, assume that s > ¢ and recall that a 3 (@,—1 A Q) & Piy, but
@ (a—1Aqy) < a:yas_y < py for all j and t. Also, by construction,
Py 7 P if 5 # k. Thus p,, = ps for i # s or j # ¢, since the
radicals of distinct primary components are different. Next, suppose
that some ¢,, is greater than or equal to the meet of the remaining
primary components appearing in the decomposition of a. We claim
that the product ¢,41 - - ¢, £ Rad(g,,) = p.,. If not, then for some s >
t+1, g5 < py; since p,, is a prime element. Then g = gg1 A+ AQsk, <
Py implies that, for some ¢, ¢s; < p,,. Therefore, p,y = Rad(gst) < po,-
However, this contradicts the facts that a :; a, =a: (@ A---Ag,) £ Py
and a ;1 ¢, £ @ :} @5—1 < pgt. This proves that g1 -- g, ﬁ Rod(g,;) =
P.;- Let ¢,/q,; be the meet of the remaining primary components in g,
after deleting ¢,;. Then (g1 - g ) (@1 A+ - *Aqi_1A(./@:5)) < ;- Since
4., 1s a primary element and g, - - - gn £ Rad(g,,), it follows that ¢q; A
= AG—1M(Q./G.;) < g,y Since the prime elements p,; are all distinet for
t=1,---,k, it follows that, for ¢ # 7, (g,;)* £ ¢,, and ¢q.: £ Rad(g,,).
Thus (g1 A~ A1) A6/ @) < oy @1/ @1 A+ - - A1) < gy, 20d
q1/¢.; £ Rad(q,,). Therefore, a,_y = qu A - Agu_y < ¢,;- But then
Q-1 = -1 A gy and thus @ 3 .-y = @ 3y (6,-1 A @) £ Py by the
inequality (4), contradicting the fact that Py 2 @ 3 a,—;. Therefore,
for all 4 and j, g,, canrot be greater than or equal to the meet of the
remaining primary component in @ = g1 A- - AQui, A AQni A Alnk,, -
Thus the following theorem has been proved.
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THEOREM 6. Let a # e be an arbitrary element in a modular, mul-
tiplicative lattice L satisfying the ACC and the condition (*). Then the

given construction yields a (automatically normal) primary decompo-
sition of a in L.

REFERENCES

1] W.E. Barnes and W.M. Cunnea, Idealdecomposition mn Noetherian rings, Can.
J. Math 17, 1965, pp 178-¢184.

[2] Y. Kurats, On an addiiwe 1deal theory in a non-assocratwe ring, Math. Zeit
88, 1965, pp. 129-135.

{3] L. Lesieur, Sur les derni-groupes reticules satasfarsant a une condition de chane,
Bull.Soc. Math. France 83, 1955, pp. 161-193.

[4] L. Lesieur and R. Crowsot, Lesteur L., and Crawsot, R., Gauthier - Villars,
Paris, 1963.

[5] P.J. McCarthy, Primary decomposition wn mubitiphcatwe lattrces, Math. Zeit.
90, 1965, pp. 185-189

6] D. Noethcott, Lessons on rings, modules and multiphertzes, Cambridge, 1968.
7] M. Ward and R. P. Dilworth, Residuated lattices, Trans. Amer. Soc. 45, 1939,
pp- 335-354.

Department of Mathematics
Kyungnam University

Masan 631-701, Korea

E-maid: vj0lkim@kyungnam.ac.kr


mailto:uj01kim@kyungnam.ac.kr

