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EVALUATIONS OF <(2n)

Junesang Choi

Abstract. Since the time of Euler, there have been many proofs 
giving the value of ^(2n). We also give an evaluation of <(2n) by ana
lyzing the generating function of Bernoulli numbers.

Many methods evaluating the value of <(2tz) have been developed 

since L. Euler (1707-1783). In general ^(2n) could be evaluated (for 

example) by applying the contour integral method [3, p. 129], by 

using the Fourier series [7, p. 376], and by appealing to the Riemann's 

functional equation for [2, p. 266]. Recently Choi et al. [4, 5] 

employed the theory of hypergeometric series and other methods to 

evaluate <(2). For further references see [1], [6], [7, p. 237], [8], [9], and 

so on.

We also want to participate in evaluating ^(2n) by analyzing the 

generating function of Bernoulli numbers. We begin by introducing 

the Riemann Zeta function, and Bernoulli numbers.

The Riemann Zeta function <(s) is defined by

OO 〔8
⑴ 亦)=£广=口二】伽-1尸 (况(s)>l).

n=l n=l
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The nth Bernoulli numbers Bn (see Apostol [2, p. 264]) are defined 

by the ge효erating function

(2)

8 々
土 = (I끼 <2以

It is not difficult to deduce, from (2), the recurrence formula for the 

Bernoulli numbers:

(3) "仁財卄=。,k=l ' '
which gives the following first few explicit numbers:

Bo = 瓦=_* B2 = I， B3 = 0, 氏=0,

2 6 30
I 1 5

B6 = 7^, B7 = 0, B8 = - —, Bq = 0, Blo =志，.… 
42 30 bo

It is easy to show that all numbers Bn with odd index greater than

1 are zero. I교 fact, upon setting B\ = —1/2 i교 (2), we have

/八 z 1 z , z Bo 9 B3 O
(4) ^I + 2Z=2C°th2=1+ 2T^ ++耳T 十….

But f(z) = (z/2) coth(z/2) is an even function, that is, = 

/(2). Hence it follows that B^k+i =0 (fc G N := (1, 2, 3, ...}). Thus 

the equation (4) is rewritten in the form:

(5)
矛土 = 1-|^ + E 懿 (I 끼 < 2%).

n=l ' '

Now we shall analyze the generating function for Bernoulli numbers 

in (5) in a different way. It is well-known that (see [7, p. 207]) the 

expansion in partial fractions of ttz cot ttz is 

⑹ 7TZCOt(7TZ)= 1 +2z2yr 勺'湛〉 (2 关 0, 土 1, 士 2,...).

J— z£ 一 
k—l
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A number of other expansions can be derived from (6). For instance, 

replacing z by iz in (6), we find that

OO [
(7) 7TZ COth(7TZ)= 1 + 麗 ^2 ~2——p- (Z 尹 ±2, ±2 如...、).

k—1

.Substituting z/(2tt) for z in (7), in view of (4), we obtain

7 ] 8
(8) ^=1 =」寸 + 222£芬两葯目("±2").

fc=l

Denote the series in (8) by g(z). We observe that the series g(z) con

verges absolutely and uniformly on every compact set K which contains 

none of the numbers ±2fc?ri (fc G N). I교deed, if 4 = max^eK |히 and 

k > A/(\Z37r), we have

1 1 1
----------- < ------------- < ------

Z* 2 + 4終兀2 — 4fc27T2 — A2 7T2k2 '

g(z) — 52 4知W { 2 — 2fc7T2 Z + 2fc7TZ J '

K = 1

and the stated observation follows from the Weierstrass Af-test.

So, except at those points z 尹 ±2加Q (fc G N), g(z) is analytic. In 

particular, g(z) is analytic in a domain, including the origin z = 0, and 

is an even function. Consequently there is a Ma시aurin series expansion 

such that

OO
⑼ g(2)= «2n22n (I히 < 27T),

n=0

where a^n = 疽?피(0)/(2n)! (n € N U {0}).

To determine U2n)we E교d that

1
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Since the series g(z) converges uniformly in every closed region con

tained in |^| < 2?r, we can differentiate it term by term and readily 

arrive at ''、

8 1
g(2n)(o)= (2n)! £ ((-2A；7rz)_2n~1 - (2知宜厂孙-坪

= 긦籍卿+ 2)，

from which, with the help of (8) and (9), we get the following Maclaurin 

series for z/(e2 — 1):

(1。) 土 = 1- 9 + $(—1)宀驛K (团< 2以

Finally equating the coefficients of z2n in equations (5) and (10), we 

obtain our desired evaluation of <(2n):

(11) <(2n) = (-1)-12n (”5

厶、、乙n，j >

which is well-known (qf [2, p. 266]).
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