East Asian Math. J. 16(2000), No. 2, pp. 233-237

EVALUATIONS OF $\zeta(2 n)$

Junesang Choi

Abstract

Since the time of Euler, there have been many proofs giving the value of $\zeta(2 n)$. We also give an evaluation of $\zeta(2 n)$ by analyzing the generating function of Bernoulli numbers.

Many methods evaluating the value of $\zeta(2 n)$ have been developed since L. Euler (1707-1783). In general $\zeta(2 n)$ could be evaluated (for example) by applying the contour integral method [3, p. 129], by using the Fourier series [7, p. 376], and by appealing to the Riemann's functional equation for $\zeta(s)$ [2, p. 266]. Recently Choi et al. [4, 5] employed the theory of hypergeometric series and other methods to evaluate $\zeta(2)$. For further references see [1], [6], [7, p. 237], [8], [9], and so on.

We also want to participate in evaluating $\zeta(2 n)$ by analyzing the generating function of Bernoulli numbers. We begin by introducing the Riemann Zeta function and Bernoulli numbers.

The Riemann Zeta function $\zeta(s)$ is defined by

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}=\frac{1}{1-2^{-s}} \sum_{n=1}^{\infty}(2 n-1)^{-s} \quad(\Re(s)>1) \tag{1}
\end{equation*}
$$

Received May 6, 2000
2000 Mathematics Subject Classification: Primary 11M06, Secondary 11B68.
Key words and phrases: Riemann Zeta function, Bernoullı numbers, generating function.

The nth Bernoulli numbers B_{n} (see Apostol [2, p. 264]) are defined by the generating function

$$
\begin{equation*}
\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n} \quad(|z|<2 \pi) \tag{2}
\end{equation*}
$$

It is not difficult to deduce, from (2), the recurrence formula for the Bernoulli numbers:

$$
\begin{equation*}
1+\sum_{k=1}^{n}\binom{n+1}{k} B_{n-k+1}=0 \tag{3}
\end{equation*}
$$

which gives the following first few explicit numbers:

$$
\begin{aligned}
& B_{0}=1, \quad B_{1}=-\frac{1}{2}, \quad B_{2}=\frac{1}{6}, \quad B_{3}=0, \quad B_{4}=-\frac{1}{30}, \quad B_{5}=0, \\
& B_{6}=\frac{1}{42}, \quad B_{7}=0, \quad B_{8}=-\frac{1}{30}, \quad B_{9}=0, \quad B_{10}=\frac{5}{66}, \ldots
\end{aligned}
$$

It is easy to show that all numbers B_{n} with odd index greater than 1 are zero. In fact, upon setting $B_{1}=-1 / 2$ in (2), we have
(4) $\frac{z}{e^{z}-1}+\frac{1}{2} z=\frac{z}{2} \operatorname{coth} \frac{z}{2}=1+\frac{B_{2}}{2!} z^{2}++\frac{B_{3}}{3!} z^{3}+\cdots$.

But $f(z)=(z / 2) \operatorname{coth}(z / 2)$ is an even function, that is, $f(-z)=$ $f(z)$. Hence it follows that $B_{2 k+1}=0(k \in \mathbb{N}:=\{1,2,3, \ldots\})$. Thus the equation (4) is rewritten in the form:

$$
\begin{equation*}
\frac{z}{e^{z}-1}=1-\frac{1}{2} z+\sum_{n=1}^{\infty} \frac{B_{2 n}}{(2 n)!} z^{2 n} \quad(|z|<2 \pi) \tag{5}
\end{equation*}
$$

Now we shall analyze the generating function for Bernoulli numbers in (5) in a different way. It is well-known that (see [7, p. 207]) the expansion in partial fractions of $\pi z \cot \pi z$ is
(6) $\pi z \cot (\pi z)=1+2 z^{2} \sum_{k=1}^{\infty} \frac{1}{z^{2}-k^{2}} \quad(z \neq 0, \pm 1, \pm 2, \ldots)$.

A number of other expansions can be derived from (6). For instance, replacing z by $i z$ in (6), we find that

$$
\begin{equation*}
\pi z \operatorname{coth}(\pi z)=1+2 z^{2} \sum_{k=1}^{\infty} \frac{1}{z^{2}+k^{2}} \quad(z \neq \pm i, \pm 2 i, \ldots) . \tag{7}
\end{equation*}
$$

.Substituting $z /(2 \pi)$ for z in (7), in view of (4), we obtain

$$
\begin{equation*}
\frac{z}{e^{z}-1}=1-\frac{1}{2} z+2 z^{2} \sum_{k=1}^{\infty} \frac{1}{z^{2}+4 k^{2} \pi^{2}} \quad(z \neq \pm 2 k \pi i) \tag{8}
\end{equation*}
$$

Denote the series in (8) by $g(z)$. We observe that the series $g(z)$ converges absolutely and uniformly on every compact set K which contains none of the numbers $\pm 2 k \pi i(k \in \mathbb{N})$. Indeed, if $A=\max _{z_{\in K}}|z|$ and $k>A /(\sqrt{3} \pi)$, we have

$$
\left|\frac{1}{z^{2}+4 k^{2} \pi^{2}}\right| \leq \frac{1}{4 k^{2} \pi^{2}-A^{2}}<\frac{1}{\pi^{2} k^{2}},
$$

and the stated observation follows from the Weierstrass M-test.
So, except at those points $z \neq \pm 2 k \pi i(k \in \mathbb{N}), g(z)$ is analytic. In particular, $g(z)$ is analytic in a domain including the origin $z=0$, and is an even function. Consequently there is a Maclaurin series expansion such that

$$
\begin{equation*}
g(z)=\sum_{n=0}^{\infty} a_{2 n} z^{2 n} \quad(|z|<2 \pi) \tag{9}
\end{equation*}
$$

where $a_{2 n}=g^{(2 n)}(0) /(2 n)!(n \in \mathbb{N} \cup\{0\})$.
To determine $a_{2 n}$, we find that

$$
g(z)=\sum_{k=1}^{\infty} \frac{1}{4 k \pi i}\left\{\frac{1}{z-2 k \pi i}-\frac{1}{z+2 k \pi i}\right\} .
$$

Since the series $g(z)$ converges uniformly in every closed region contained in $|z|<2 \pi$, we can differentiate it term by term and readily arrive at

$$
\begin{aligned}
g^{(2 n)}(0) & =(2 n)!\sum_{k=1}^{\infty} \frac{1}{4 k \pi i}\left\{(-2 k \pi i)^{-2 n-1}-(2 k \pi i)^{-2 n-1}\right\} \\
& =\frac{(-1)^{n}(2 n)!}{(2 \pi)^{2 n+2}} \zeta(2 n+2),
\end{aligned}
$$

from which, with the help of (8) and (9), we get the following Maclaurin series for $z /\left(e^{z}-1\right)$:

$$
\begin{equation*}
\frac{z}{e^{z}-1}=1-\frac{1}{2} z+\sum_{n=1}^{\infty}(-1)^{n-1} \frac{2 \zeta(2 n)}{(2 \pi)^{2 n}} z^{2 n} \quad(|z|<2 \pi) . \tag{10}
\end{equation*}
$$

Finally equating the coefficients of $z^{2 n}$ in equations (5) and (10), we obtain our desired evaluation of $\zeta(2 n)$:

$$
\begin{equation*}
\zeta(2 n)=(-1)^{n-1} \frac{(2 \pi)^{2 n} B_{2 n}}{2(2 n)!} \quad(n \in \mathbb{N}) \tag{11}
\end{equation*}
$$

which is well-known (cf. [2, p. 266]).

Acknowledgement

The present investigation was accomplished with Research Fund provided by Dongguk University under its Program of publication at the specified academic journals.

References

[1] T. M. Apostol, Another elementary proof of the formula for $\zeta(2 n)$, Amer. Math. Monthly 80 (1973), 425-431.
[2] T. M. Apostol, Introduction to Aralytzc Number Theory, Springer-Verlag, 1976.
[3] J. Bak and D. J. Newman, Complex Analysis, Springer-Verlag, 1982.
[4] J. Choi and A. K. Rathie, An evaluatıon of $\zeta(2)$, Far East J. Math. Sci. 5 (1997), 393-398.
[5] J. Chol, A. K. Rathie, and H. M. Snvastava, Some hypergeometric and other evaluatzons of $\zeta(2)$ and alleed series, Appl. Math. Comput. 104 (1999), 101108.
[6] L. Euler, Introduction to Analysis of the Infinzte, Book I, Springer-Verlag, 1988.
[7] K. Knopp, Theory and Application of infinite Serıes, Dover Publications, luc., 1990.
[8] 1. Papadimitriou, A sample proof the formula $\sum_{k=1}^{\infty} k^{-2}=\pi^{2} / 6$, Amer. Math. Monthly 80 (1973), 424-425.
[9] G. T. Wilhams, A new method of evaluating $\zeta(2 n)$, Amer. Math. Monthly 60 (1953), 19-25.

Department of Mathematics
Dongguk University
Kyongju 780-714, Korea

